scholarly journals Piezoelectric energy harvesting pedal integrated with a compliant load amplifier

2019 ◽  
Vol 11 (1) ◽  
pp. 168781401882014
Author(s):  
YiHe Zhang ◽  
Chul-Hee Lee

Energy generation technologies that use piezoelectric materials as uninterrupted power supplies are one of the most practical solutions of low-power wireless sensor network. The piezoelectric generator collects mechanical energy from the environment and transforms it into electricity to supply to microelectronic devices. Thus, these alternative energy sources can reduce the consumption of batteries, thereby reducing environmental pollution. Piezoelectric materials can work in the bending, compression, and shear modes, which are named as d31, d33, and d15 modes, respectively. In this study, a piezo stack which worked in d31 mode has been designed and integrated into an energy harvesting pedal. A novel compliant amplifying mechanism has to be designed to amplify the input load so that the high-stiffness piezoelectric stack can achieve a large energy output at a lower input force. This compliant mechanism has been designed by the pseudo-rigid-body and topology optimization methods. The amplification ratios of different sized flexible amplification mechanisms are calculated through the finite element analysis and validated by experiments. Finally, a pedal generator has been made and the test results show that the collected electricity can effectively drive a low-power microcontroller, sensor, and other devices of these kinds.

Author(s):  
Jennifer S Raj ◽  
G Ranganathan

Due to the global energy crisis and environmental degradation, largely as a result of the increased usage of non-renewable energy sources, researchers have become more interested in exploring alternative energy systems, which may harvest energy from natural sources. This research article provides a comparison between various modeling of piezoelectric elements in terms of power generation for energy harvesting solutions. The energy harvesting can be computed and calculated based on piezoelectric materials and modeling for the specific application. The most common type of environmental energy that may be collected and transformed into electricity for several purposes is Piezoelectric transduction, which is more effective, compared to other mechanical energy harvesting techniques, including electrostatic, electromagnetic, and triboelectric transduction, due to their high electromechanical connection factor and piezoelectric coefficients. As a result of this research, scientists are highly interested in piezoelectric energy collection.


2018 ◽  
Vol 29 (18) ◽  
pp. 3572-3581
Author(s):  
Suihan Liu ◽  
Ali Imani Azad ◽  
Rigoberto Burgueño

Piezoelectric energy harvesting from ambient vibrations is well studied, but harvesting from quasi-static responses is not yet fully explored. The lack of attention is because quasi-static actions are much slower than the resonance frequency of piezoelectric oscillators to achieve optimal outputs; however, they can be a common mechanical energy resource: from large civil structure deformations to biomechanical motions. The recent advances in bio-micro-electro-mechanical systems and wireless sensor technologies are motivating the study of piezoelectric energy harvesting from quasi-static conditions for low-power budget devices. This article presents a new approach of using quasi-static deformations to generate electrical power through an axially compressed bilaterally constrained strip with an attached piezoelectric layer. A theoretical model was developed to predict the strain distribution of the strip’s buckled configuration for calculating the electrical energy generation. Results from an experimental investigation and finite element simulations are in good agreement with the theoretical study. Test results from a prototyped device showed that a peak output power of 1.33 μW/cm2 was generated, which can adequately provide power supply for low-power budget devices. And a parametric study was also conducted to provide design guidance on selecting the dimensions of a device based on the external embedding structure.


Author(s):  
Jingnan Zhao ◽  
Hao Wang

This study investigated the feasibility of applying piezoelectric energy harvesting technology in airfield pavements through mechanistic modeling and economic analysis. The energy harvesting performance of piezoelectric transducers was evaluated based on mechanical energy induced by multi-wheel aircraft loading on flexible airfield pavements. A three-dimensional finite element model was used to estimate the stress pulse and magnitude under moving aircraft tire loading. A stack piezoelectric transducer design was used to estimate the power output of a piezoelectric harvester embedded at different locations and depths in the pavement. The aircraft load and speed were found to be vital factors affecting the power output, along with the installation depth and horizontal locations of the energy harvester. On the other hand, the installation of the energy module had a negligible influence on the horizontal tensile strains at the bottom of the asphalt layer and compressive strains on the top of the subgrade. However, the near-surface pavement strains increased when the edge ribs of the tire were loaded on the energy module. Feasibility analysis results showed that the calculated levelized cost of electricity was high in general, although it varies depending on the airport traffic levels and the service life of the energy module. With the development of piezoelectric materials and technology, further evaluation of energy harvesting applications at airports needs to be conducted.


Author(s):  
A. Majeed

Recent advancements in wireless technology and low power electronics such as micro electrome-chanical systems (MEMS), have created a surge of technical innovations in the eld of energy har-vesting. Piezoelectric materials, which operate on vibrations surrounding the system have becomehighly useful in terms of energy harvesting. Piezoelectricity is the ability to transform mechanicalstrain energy, mostly vibrations, to electrical energy, which can be used to power devices. This paperwill focus on energy harvesting by piezoelectricity and how it can be incorporated into various lowpower devices and explain the ability of piezoelectric materials to function as self-charging devicesthat can continuously supply power to a device and will not require any battery for future processes.


Low-power requirements of contemporary sensing technology attract research on alternate power sources that can replace batteries. Energy harvesters’ function as power sources for sensors and other low-power devices by transducing the ambient energy into usable electrical form. Energy harvesters absorbing the ambient vibrations that have potential to deliver uninterrupted power to sensing nodes installed in remote and vibration rich environments motivate the research in vibrational energy harvesting. Piezoelectric bimorphs have been demonstrating a pre-eminence in converting the mechanical energy in ambient vibrations into electrical energy. Improving the performance of these harvesters is pivotal, as the energy in ambient vibrations is innately low. In this paper, we propose a mechanism namely MultilayerPEHM (Piezoelectric Energy Harvester Model) which helps in converting the waste or unused energy into the useful energy. Multilayer-PEHM contains the various layer, which is placed one over the other, each layer is placed with specific element according to their properties and size, the size of the layer plays an important part for achieving efficiency. Furthermore, this paper presents an audit of the energy available in a vibrating source and design for effective transfer of the energy to harvesters, secondly, design of vibration energy harvesters with a focus to enhance their performance, and lastly, identification of key performance metrics influencing conversion efficiencies and scaling analysis for these acoustic harvesters. Typical vibration levels in stationary installations such as surfaces of blowers and ducts, and in mobile platforms such as light and heavy transport vehicles, are determined by measuring the acceleration signal. The frequency content in the signal is determined from the Fast Fourier Transform.


MRS Advances ◽  
2017 ◽  
Vol 2 (56) ◽  
pp. 3441-3446 ◽  
Author(s):  
William G. Kaval ◽  
Robert A. Lake ◽  
Ronald A. Coutu

ABSTRACTResearch of electrostrictive polymers has generated new opportunities for harvesting energy from the surrounding environment and converting it into usable electrical energy. Electroactive polymer (EAP) research is one of the new opportunities for harvesting energy from the natural environment and converting it into usable electrical energy. Piezoelectric ceramic based energy harvesting devices tend to be unsuitable for low-frequency mechanical excitations such as human movement. Organic polymers are typically softer and more flexible therefore translated electrical energy output is considerably higher under the same mechanical force. In addition, cantilever geometry is one of the most used structures in piezoelectric energy harvesters, especially for mechanical energy harvesting from vibrations. In order to further lower the resonance frequency of the cantilever microstructure, a proof mass can be attached to the free end of the cantilever. Mechanical analysis of an experimental bimorph structure was provided and led to key design rules for post-processing steps to control the performance of the energy harvester. In this work, methods of materials processing and the mechanical to electrical conversion of vibrational energy into usable energy were investigated. Materials such as polyvinyledenedifluoridetetra-fluoroethylene P(VDF-TrFE) copolymer films (1um thick or less) were evaluated and presented a large relative permittivity and greater piezoelectric β-phase without stretching. Further investigations will be used to identify suitable micro-electromechanical systems (MEMs) structures given specific types of low-frequency mechanical excitations (10-100Hz).


2020 ◽  
Vol 12 (7) ◽  
pp. 2933 ◽  
Author(s):  
Chaiyan Jettanasen ◽  
Panapong Songsukthawan ◽  
Atthapol Ngaopitakkul

This study investigates the use of an alternative energy source in the production of electric energy to meet the increasing energy requirements, encourage the use of clean energy, and thus reduce the effects of global warming. The alternative energy source used is a mechanical energy by piezoelectric material, which can convert mechanical energy into electrical energy, that can convert mechanical energy from pressure forces and vibrations during activities such as walking and traveling into electrical energy. Herein, a pilot device is designed, involving the modification of a bicycle into a stationary exercise bike with a piezoelectric generator, to study energy conversion and storage generated from using the bike. Secondly, the piezoelectric energy harvesting system is used on bicycles as a micro-mobility, light electric utility vehicle with smart operation, providing a novel approach to smart city design. The results show that the energy harvested from the piezoelectric devices can be stored in a 3200 mAh, 5 V battery and power sensors on the bicycle. Moreover, 13.6 mW power can be generated at regular cycling speed, outputting 11.5 V and 1.2 mA. Therefore, the piezoelectric energy harvesting system has sufficient potential for application as a renewable energy source that can be used with low power equipment.


Author(s):  
Christopher A. Howells

Piezoelectric materials can be used to convert oscillatory mechanical energy into electrical energy. This technology, together with innovative mechanical coupling designs, can form the basis for an energy harvesting solution for military and commercial systems. The US Army-CERDEC at Ft. Belvoir, VA and Continuum Photonics, Inc. in Billerica, MA completed a three year Science & Technology Objective (STO) research effort that focused on harvesting energy from physical exertion. The effort was aimed at investigating the concept of Piezoelectric Energy Harvesting for supplying supplemental power for dismounted soldiers. This STO effort resulted in the development of four proof-of-concept Heel Strike Units where each unit is essentially a small electric generator that utilizes piezoelectric elements to convert mechanical motion into electrical power in the form factor of the heel of a soldier’s combat boot. The Power Technology Branch has tested and evaluated the Heel Strike units. The results of the testing and evaluation and the performance of this small electric generator are presented. The generator’s piezoelectric conversion of mechanical motion into electrical power, its efficiency, the processes it goes through to produce useable power and commercial applications of the Heel Strike electric generator are discussed.


2011 ◽  
Vol 1325 ◽  
Author(s):  
R. Rai ◽  
I. Coondoo ◽  
R. P. Lopes ◽  
I. Bdikin ◽  
R. Ayouchi ◽  
...  

ABSTRACTMechanical energy harvesting from ambient vibrations is an attractive renewable source of energy for various applications. Prior research was solely based on lead-containing materials which are detrimental to the environment and health. Therefore, lead-free materials are becoming more attractive for harvesting applications. The present work is focused on the development of lead-free piezoelectric materials based on solid solution having composition (KNa)NbO3-xABO3, (where A = Li, and B = Nb; x = 0, 5, 5.5, 6, and 6.5 wt%). The solid solutions of the above ceramics were prepared by using solid-state reaction method. The X-ray diffraction spectra exhibited single phase formation and good crystallinity with LiNbO3 addition up to x = 6.5 wt%. Dielectric studies reveal that the composition with LiNbO3 = 6.5 wt% exhibits superior properties suitable for piezoelectric energy harvesting applications. The nanoscale piezoelectric data obtained with piezoresponse force microscopy provide a direct evidence of strong piezoelectricity with LN doping. The best piezoelectric properties are obtained for the composition K0.5Na0.5NbO3 – 6.5%LiNbO3.


Sign in / Sign up

Export Citation Format

Share Document