Mechanistic Modeling and Economic Analysis of Piezoelectric Energy Harvesting Potential in Airport Pavements

Author(s):  
Jingnan Zhao ◽  
Hao Wang

This study investigated the feasibility of applying piezoelectric energy harvesting technology in airfield pavements through mechanistic modeling and economic analysis. The energy harvesting performance of piezoelectric transducers was evaluated based on mechanical energy induced by multi-wheel aircraft loading on flexible airfield pavements. A three-dimensional finite element model was used to estimate the stress pulse and magnitude under moving aircraft tire loading. A stack piezoelectric transducer design was used to estimate the power output of a piezoelectric harvester embedded at different locations and depths in the pavement. The aircraft load and speed were found to be vital factors affecting the power output, along with the installation depth and horizontal locations of the energy harvester. On the other hand, the installation of the energy module had a negligible influence on the horizontal tensile strains at the bottom of the asphalt layer and compressive strains on the top of the subgrade. However, the near-surface pavement strains increased when the edge ribs of the tire were loaded on the energy module. Feasibility analysis results showed that the calculated levelized cost of electricity was high in general, although it varies depending on the airport traffic levels and the service life of the energy module. With the development of piezoelectric materials and technology, further evaluation of energy harvesting applications at airports needs to be conducted.

2011 ◽  
Vol 1325 ◽  
Author(s):  
R. Rai ◽  
I. Coondoo ◽  
R. P. Lopes ◽  
I. Bdikin ◽  
R. Ayouchi ◽  
...  

ABSTRACTMechanical energy harvesting from ambient vibrations is an attractive renewable source of energy for various applications. Prior research was solely based on lead-containing materials which are detrimental to the environment and health. Therefore, lead-free materials are becoming more attractive for harvesting applications. The present work is focused on the development of lead-free piezoelectric materials based on solid solution having composition (KNa)NbO3-xABO3, (where A = Li, and B = Nb; x = 0, 5, 5.5, 6, and 6.5 wt%). The solid solutions of the above ceramics were prepared by using solid-state reaction method. The X-ray diffraction spectra exhibited single phase formation and good crystallinity with LiNbO3 addition up to x = 6.5 wt%. Dielectric studies reveal that the composition with LiNbO3 = 6.5 wt% exhibits superior properties suitable for piezoelectric energy harvesting applications. The nanoscale piezoelectric data obtained with piezoresponse force microscopy provide a direct evidence of strong piezoelectricity with LN doping. The best piezoelectric properties are obtained for the composition K0.5Na0.5NbO3 – 6.5%LiNbO3.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Min Zhang ◽  
YingZheng Liu ◽  
ZhaoMin Cao

A concept of energy harvesting from vortex-induced vibrations of a rigid circular cylinder with two piezoelectric beams attached is investigated. The variations of the power levels with the free stream velocity are determined. A mathematical approach including the coupled cylinder motion and harvested voltage is presented. The effects of the load resistance, piezoelectric materials, and circuit combined on the natural frequency and damping of the vibratory system are determined by performing a linear analysis. The dynamic response of the cylinder and harvested energy are investigated. The results show that the harvested level in SS and SP&PS modes is the same with different values of load resistance. For four different system parameters, the results show that the bigger size of cylinder with PZT beams can obtain the higher harvested power.


2018 ◽  
Vol 29 (18) ◽  
pp. 3572-3581
Author(s):  
Suihan Liu ◽  
Ali Imani Azad ◽  
Rigoberto Burgueño

Piezoelectric energy harvesting from ambient vibrations is well studied, but harvesting from quasi-static responses is not yet fully explored. The lack of attention is because quasi-static actions are much slower than the resonance frequency of piezoelectric oscillators to achieve optimal outputs; however, they can be a common mechanical energy resource: from large civil structure deformations to biomechanical motions. The recent advances in bio-micro-electro-mechanical systems and wireless sensor technologies are motivating the study of piezoelectric energy harvesting from quasi-static conditions for low-power budget devices. This article presents a new approach of using quasi-static deformations to generate electrical power through an axially compressed bilaterally constrained strip with an attached piezoelectric layer. A theoretical model was developed to predict the strain distribution of the strip’s buckled configuration for calculating the electrical energy generation. Results from an experimental investigation and finite element simulations are in good agreement with the theoretical study. Test results from a prototyped device showed that a peak output power of 1.33 μW/cm2 was generated, which can adequately provide power supply for low-power budget devices. And a parametric study was also conducted to provide design guidance on selecting the dimensions of a device based on the external embedding structure.


Author(s):  
Abbas F. Jasim ◽  
Hao Wang ◽  
Greg Yesner ◽  
Ahmad Safari ◽  
Pat Szary

This study investigated the energy harvesting performance of a piezoelectric module in asphalt pavements through laboratory testing and multi-physics based simulation. The energy harvester module was assembled with layers of Bridge transducers and tested in the laboratory. A decoupled approach was used to study the interaction between the energy harvester and the surrounding pavement. The effects of embedment location, vehicle speed, and temperature on energy harvesting performance were investigated. The analysis findings indicate that the embedment location and vehicle speed affects the resulted power output of the piezoelectric energy harvesting system. The embedment depth of the energy module affects both the magnitude and frequency of stress pulse on top of the energy module induced by tire loading. On the other hand, higher vehicle speed causes greater loading frequency and thus greater power output; the effect of pavement temperature is negligible. The analysis of total power output before reaching fatigue failure of the energy module can be used to determine the optimum embedment location in the asphalt layer. The proposed energy harvesting system provides great potential to generate green energy from waste kinetic energy in roadway pavements. Field study is recommended to verify these findings with long-term performance monitoring of pavement with embedded energy harvesters.


2018 ◽  
Vol 5 (3-4) ◽  
pp. 53-65 ◽  
Author(s):  
Dinesh R. Palikhel ◽  
Tyrus A. McCarty ◽  
Jagdish P. Sharma

Abstract Vibrational energy from intermodal transport system can be recovered through the application of piezoelectric energy harvesting system. The intermodal vibration sources are passenger cars and freight trucks moving on streets and highways, trains moving on railway tracks and planes moving on airport runways. However, the primary limiting factor of the application of the piezoelectric energy harvesting system has been the insignificant power output for power storage or to directly power electrical device. A special nano-mixture coating is developed to enhance the energy harvesting capability of the conventional piezoelectric material. This research investigates the impact of the nano-mixture coating on the power output. The experimental results of the nano-mixture coated system show substantial and explicit improvement on the power output. Alternative geometrical designs, trapezoidal and triangular are explored in anticipation for improved power output. But the rectangular energy harvester demonstrates better power harvesting capability. The results presented in this paper show the potential of the nano-mixture coating in power harvesting from intermodal transport system.


Author(s):  
A. Majeed

Recent advancements in wireless technology and low power electronics such as micro electrome-chanical systems (MEMS), have created a surge of technical innovations in the eld of energy har-vesting. Piezoelectric materials, which operate on vibrations surrounding the system have becomehighly useful in terms of energy harvesting. Piezoelectricity is the ability to transform mechanicalstrain energy, mostly vibrations, to electrical energy, which can be used to power devices. This paperwill focus on energy harvesting by piezoelectricity and how it can be incorporated into various lowpower devices and explain the ability of piezoelectric materials to function as self-charging devicesthat can continuously supply power to a device and will not require any battery for future processes.


2019 ◽  
Vol 86 (9) ◽  
Author(s):  
He Zhang ◽  
Kangxu Huang ◽  
Zhicheng Zhang ◽  
Tao Xiang ◽  
Liwei Quan

Scavenging mechanical energy from the deformation of roadways using piezoelectric energy transformers has been intensively explored and exhibits a promising potential for engineering applications. We propose here a new packaging method that exploits MC nylon and epoxy resin as the main protective materials for the piezoelectric energy harvesting (PEH) device. Wheel tracking tests are performed, and an electromechanical model is developed to double evaluate the efficiency of the PEH device. Results indicate that reducing the embedded depth of the piezoelectric chips may enhance the output power of the PEH device. A simple scaling law is established to show that the normalized output power of the energy harvesting system relies on two combined parameters, i.e., the normalized electrical resistive load and normalized embedded depth. It suggests that the output power of the system may be maximized by properly selecting the geometrical, material, and circuit parameters in a combined manner. This strategy might also provide a useful guideline for optimization of piezoelectric energy harvesting system in practical roadway applications.


Author(s):  
Tom Page

The aim of the study was to investigate as to whether piezoelectric energy harvesting could be a viable contributor to a source of renewable energy for the future. Here, a keyboard usage study was conducted using a data gathering computer program called WhatPulse in which participants and their keyboards were monitored for one week. The results were used in conjunction with power output figures from work done by Wacharasindhu and Kwon (2008) who prototyped a piezoelectric keyboard and found it was capable of producing 650 µJ of energy per keystroke. The results from this study suggest piezoelectric keyboards could not be used to create self-sustaining systems for any of the devices proposed. Further uses for the stored energy have been suggested but the question to the viability of piezoelectric keyboards as a useful energy source looks discouraging. Other applications for the technology could be explored to enhance power output and utilise larger amounts of vibrational energy.


2019 ◽  
Vol 4 (1) ◽  
pp. 3-39 ◽  
Author(s):  
Shashank Priya ◽  
Hyun-Cheol Song ◽  
Yuan Zhou ◽  
Ronnie Varghese ◽  
Anuj Chopra ◽  
...  

Abstract Piezoelectric microelectromechanical systems (PiezoMEMS) are attractive for developing next generation self-powered microsystems. PiezoMEMS promises to eliminate the costly assembly for microsensors/microsystems and provide various mechanisms for recharging the batteries, thereby, moving us closer towards batteryless wireless sensors systems and networks. In order to achieve practical implementation of this technology, a fully assembled energy harvester on the order of a quarter size dollar coin (diameter=24.26 mm, thickness=1.75 mm) should be able to generate about 100 μW continuous power from low frequency ambient vibrations (below 100 Hz). This paper reviews the state-of-the-art in microscale piezoelectric energy harvesting, summarizing key metrics such as power density and bandwidth of reported structures at low frequency input. This paper also describes the recent advancements in piezoelectric materials and resonator structures. Epitaxial growth and grain texturing of piezoelectric materials is being developed to achieve much higher energy conversion efficiency. For embedded medical systems, lead-free piezoelectric thin films are being developed and MEMS processes for these new classes of materials are being investigated. Non-linear resonating beams for wide bandwidth resonance are also reviewed as they would enable wide bandwidth and low frequency operation of energy harvesters. Particle/granule spray deposition techniques such as aerosol-deposition (AD) and granule spray in vacuum (GSV) are being matured to realize the meso-scale structures in a rapid manner. Another important element of an energy harvester is a power management circuit, which should maximize the net energy harvested. Towards this objective, it is essential for the power management circuit of a small-scale energy harvester to dissipate minimal power, and thus it requires special circuit design techniques and a simple maximum power point tracking scheme. Overall, the progress made by the research and industrial community has brought the energy harvesting technology closer to the practical applications in near future.


Author(s):  
Dan Li ◽  
Junyi Cao ◽  
Shengxi Zhou ◽  
Yangquan Chen

This paper presents a factional model for broadband piezoelectric energy harvesting systems. Piezoelectric materials pay a significant role in harvesting ambient vibration energy. Due to their inherent characteristics and electromechanical interaction effect, piezoelectric energy harvesting exhibits the hysteresis characteristic under sweeping environmental vibration. Fractional order model of piezoelectric energy harvesting could capture the hysteresis characteristics. Simulation and experimental results show that fractional model of piezoelectric energy harvesting is more effective in describing the system dynamic.


Sign in / Sign up

Export Citation Format

Share Document