scholarly journals Performance analysis of a ball valve used for gas pipelines by introducing nondimensional parameters

2019 ◽  
Vol 11 (1) ◽  
pp. 168781401882335 ◽  
Author(s):  
Chul-Kyu Kim ◽  
Sang-Moon Lee ◽  
Choon-Man Jang

The present study deals with the performance characteristics of a ball valve used for gas pipelines by introducing nondimensional parameters. The ball valve has relatively complex flow characteristics on the inside and downstream of the valve, although it has a simple structure as compared with the other valves. The nondimensional parameters, which define the valve operating conditions, are introduced to analyze the nature of the physical properties due to the valve’s complex flow. To define the valve flow conditions with respect to valve size, seven nondimensional parameters were selected: pressure ratio, volumetric flow rate ratio, mass flow rate ratio, Reynolds number, Mach number, valve flow coefficient, and inherent flow coefficient. The open-loop type experimental setup is designed to measure the pressure drop and the volumetric flow rate of the ball valve according to the opening rate (angle) of the test valve. Based on the experimental data, obtained by the data acquisition system of the test rig, useful nondimensional parameters to define the nature of the valve performance have been selected and determined. Throughout the experimental analysis of the ball valve, it was found that the nondimensional parameters of pressure ratio, Reynolds number, and Mach number have a similar tendency as related to the valve performance. It can be seen that the intrinsic characteristics of the ball valve are represented by the selected nondimensional parameters, which are defined irrespective of the valve size. The authors proposed a quadratic polynomial for the volumetric flow rate ratio, and the mass flow rate ratio, and introduced the formula for predicting the inherent flow coefficient by the cubic approximation polynomial. It is noted that the nondimensional parameters of the ball valve can be used to determine the performance characteristics with respect to the valve-opening rate and size effectively.

Author(s):  
Ryo Kubo ◽  
Fumio Otomo ◽  
Yoshitaka Fukuyama ◽  
Yuhji Nakata

A CFD investigation was conducted on the total pressure loss variation for a linear nozzle guide vane cascade of a gas turbine, due to the individual film injections from the leading edge shower head, the suction surface, the pressure surface and the trailing edge slot. The results were compared with those of low speed wind tunnel experiments. A 2-D Navier-Stokes procedure for a 2-D slot injection, which approximated a row of discrete film holes, was performed to clarify the applicable limitation in the pressure loss prediction during an aerodynamic design stage, instead of a costly 3-D procedure for the row of discrete holes. In mass flow rate ratios of injection to main flow from 0% to 1%, the losses computed by the 2-D procedure agreed well with the experimental losses except for the pressure side injection cases. However, as the mass flow rate ratio was increased to 2.5%, the agreement became insufficient. The same tendency was observed in additional 3-D computations more closely modeling the injection hole shapes. The summations of both experimental and computed loss increases due to individual row injections were compared with both experimental and computed loss increases due to all-row injection with the mass flow rate ratio ranging from 0% to 7%. Each summation agreed well with each all-row injection result. Agreement between experimental and calculated results was acceptable. Therefore, the loss due to all-row injections in the design stage can be obtained by the correlations of 2-D calculated losses from individual row injections. To improve more precisely the summation prediction for the losses due to the present all-row injections, extensive research on the prediction for the losses due to the pressure side injection should be carried out.


Author(s):  
R. J. Boyle ◽  
S. M. Jones

Approaches to improving gas turbine cycle efficiency by cooling the compressor discharge air used for turbine cooling are explored. From a turbine cycle standpoint, cooling the coolant air can improve cycle efficiency. A significant improvement in specific fuel consumption is achieved by raising the turbine rotor inlet temperature, and engine pressure ratio. Precooling compressor discharge air can enable rotor inlet temperature to increase up to 100 K at the same rotor cooling flow rate ratio. The efficiency gains from a 100 K rise in rotor inlet temperature translated into a fuel savings of 400 kg for a mission length of 5450 km. This fuel savings means about a 1200 kg savings in CO2 production. Compressor discharge air that passes through a heat exchanger may not have enough pressure to prevent hot gas ingestion through the cooling holes of the high pressure turbine stator. A stator analysis assuming a mixture of precooled and uncooled compressor discharge air showed only a 50 K rise in rotor inlet temperature due to precooling at the same cooling flow rate ratio.


Volume 3 ◽  
2004 ◽  
Author(s):  
Juan C. Ordonez ◽  
Sheng Chen

In this paper we consider the fundamental problem of maximizing the power extraction from a hot stream when the collecting stream experiences a phase change and there are limits imposed by the materials on the operating temperatures. It constitutes an extension of [4] where it was pointed out the existence of an optimal mass flow rate ratio of the hot stream to the collecting stream. In this work, we study the effects of the restrictions imposed by limiting temperatures on the spatial configuration, power extraction and the optimal matching of the two streams. An optimal hot-stream-to-collecting-stream mass flow rate ratio can be found when the collecting stream experiences a phase change while in contact with the hottest section of the hot stream. Associated to the optimal mass flow rate ratio there is also an optimal heat exchanger area allocation. The effects of several operating parameters on the optimal configuration are documented. This paper constitutes an illustration of how thermodynamic optimization leads to the discovery of system structure (constructal theory [1]).


2016 ◽  
Vol 19 (2) ◽  
pp. 34-43
Author(s):  
Quoc Kien Vo ◽  
Hiep Chi Le ◽  
Tuyen Van Nguyen ◽  
Trinh Thi Minh Nguyen

The main content of the paper focuses on the theoretical study of the heat exchange between sprayed water and air in a humidification – dehumidification unit. The gained results [7] have been validated by using Hou data [1] and show that, in order to achieve the maximum GOR, the mass flow rate ratio between sprayed water and air depends on the sprayed water temperature and the minimum temperature difference ∆tmin. Particularly, the spayed water temperature should be from 70oC to 75oC when the minimum temperature difference ∆tmin= 5oC.


Author(s):  
Zhong-yi Fu ◽  
Hui-ren Zhu ◽  
Cun-liang Liu ◽  
Cong Liu ◽  
Zheng Li

This paper experimentally investigates the film cooling performance of an enlarged turbine guide vane with full-coverage cylindrical hole film cooling in short duration transonic wind tunnel which can model realistic engine aerodynamic conditions and adjust inlet Reynolds number and isentropic exit Mach number independently. The effects of mass flow rate ratio (MFR=4.83%∼8.83%), inlet Reynolds number (Rein= 1.7×105∼5.7×105), and isentropic exit Mach number (Mais=0.81∼1.01) are investigated. There are five rows of cylindrical film cooling holes on the pressure side and four such rows on the suction side respectively. Another four rows of cylindrical holes are provided on the leading edge to obtain a showerhead film cooling. The surface heat transfer coefficient and adiabatic film cooling effectiveness are derived from the surface temperatures measured by the thermocouples mounted in the middle span of the vane surface based on transient heat transfer measurement method. Mass flow rate ratio is shown to have a significant effect on film cooling effectiveness. The increase of mass flow rate ratio increases film cooling effectiveness on pressure side, while increasing this factor has opposite effect on film cooling effectiveness on the suction side. At the same mass flow rate ratio, increasing the Reynolds number can enhance the film cooling performance, the expectation is that at low mass flow rate ratio condition increasing the Reynolds number decreases film cooling effectiveness on the pressure side. The heat transfer coefficient increases with the mass flow rate ratio increasing on both pressure and suction side. At middle and high inlet Reynolds number condition, in the region of 0.4<s<0.6 on suction side, the coolant weakens heat transfer adversely.


Sign in / Sign up

Export Citation Format

Share Document