scholarly journals Study on solid–liquid two-phase flow characteristics of centrifugal pump impeller with non-smooth surface

2019 ◽  
Vol 11 (5) ◽  
pp. 168781401984826 ◽  
Author(s):  
Yunqing Gu ◽  
Nuojia Liu ◽  
Jiegang Mou ◽  
Peijian Zhou ◽  
Heng Qian ◽  
...  
2008 ◽  
Vol 63 (1-4) ◽  
pp. 18-22 ◽  
Author(s):  
Jose Caridad ◽  
Miguel Asuaje ◽  
Frank Kenyery ◽  
Andrés Tremante ◽  
Orlando Aguillón

2009 ◽  
Vol 2009 (0) ◽  
pp. 361-362
Author(s):  
Toshio WATANABE ◽  
Kazuhiro SHITE ◽  
Satoshi WATANABE ◽  
Kusuo OKUMA ◽  
Akinori FURUKAWA

2019 ◽  
Vol 105 ◽  
pp. 11-26 ◽  
Author(s):  
Rodolfo Marcilli Perissinotto ◽  
William Monte Verde ◽  
Marcelo Souza de Castro ◽  
Jorge Luiz Biazussi ◽  
Valdir Estevam ◽  
...  

Machines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 373
Author(s):  
Guangjie Peng ◽  
Long Tian ◽  
Hao Chang ◽  
Shiming Hong ◽  
Daoxing Ye ◽  
...  

The slurry pump is widely used in ore mining, metal smelting, petrochemical, and other industries, mainly to transport fluid media containing large solid particles. Importantly, it is easy to damage the impeller of a slurry pump in the operation process, which greatly affects the performance of the pump. In this paper, a 25 MZ slurry pump was selected as the research object, and the Euler–Euler multiphase flow model was employed to analyze the internal flow characteristics of the slurry pump under the conditions of clear water and solid–liquid two-phase flow. Additionally, the flow characteristics of each part under different flow conditions were studied, and the effects of different particle volume concentrations, particle sizes, and pump speeds on the impeller’s wear characteristics and hydraulic performance were analyzed. In order to verify the reliability and accuracy of the numerical simulation results, clean water and solid–liquid two-phase flow wear tests of the slurry pump were carried out, and the results showed that a high solid volume fraction and solid–phase slip velocity were generated at the junction of the blade leading edge and the rear cover plate, thus leading to easier wear of the blade. Therefore, enhancing the strength of the junction between the blade leading edge and the rear cover plate is beneficial for improving service life and should be considered in the design of slurry pumps.


Symmetry ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2003
Author(s):  
Chaoshou Yan ◽  
Jianfei Liu ◽  
Shuihua Zheng ◽  
Bin Huang ◽  
Jiacheng Dai

In order to study the wear law of the centrifugal pump flowing surface under different wear-rings clearance, the McLaury wear model was used to conduct the full-passage numerical simulation of solid-liquid two-phase flow in a single-stage single-suction centrifugal pump. The reliability of the numerical calculation method is verified by comparing the experimental data and numerical simulation results. The clearance is 0.1, 0.15, 0.2, 0.3 and 0.5 mm, respectively. The results show that the wear of the centrifugal pump blades is mainly concentrated in the end part and the inlet part of the blade, and the wear of the pressure surface at the end of the suction surface and the front of the blade is more serious. As the clearance increases, the maximum wear value in the impeller increases first and then decreases, reaching a maximum at 0.15 mm. With the increase of the clearance, the wear degree and the wear rate of the volute wall surface first increase and then decrease, and reach the maximum at 0.2 mm. With the increase of the clearance and the concentration of the fluid medium, the wear at the clearance of the centrifugal pump is more serious, and the severe wear area exhibits a point-like circumferential distribution.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Benliang Xu ◽  
Zuchao Zhu ◽  
Zhe Lin ◽  
Dongrui Wang ◽  
Guangfei Ma

Purpose The purpose of this paper is to analyze the mechanism of particle erosion in butterfly valve pipelines under hydraulic transportation conditions. The results will affect the sealing and safety of butterfly valve pipelines and hopefully serve as reference for the anti-erosion design of butterfly valve pipelines. Design/methodology/approach Through the discrete element method (DEM) simulation that considers the force between particles, the detached eddy simulation (DES) turbulence model based on realizable k-epsilon is used to simulate the solid-liquid two-phase flow-induced erosion condition when the butterfly valve is fully opened. The simulation is verified by building an experimental system correctness. The solid-liquid two-phase flow characteristics, particle distribution and erosion characteristics of the butterfly valve pipeline under transportation conditions are studied. Findings The addition of particles may enhance the high-speed area behind the valve. It first increases and then decreases with increasing particle size. With increasing particle size, the low-velocity particles change from being uniformly distributed in flow channel to first gathering in the front of the valve and, then, to gathering in lower part of it. Fluid stagnation at the left arc-shaped flange leads to the appearance of two high-speed belts in the channel. With increasing fluid velocity, high-speed belts gradually cover the entire valve surface by focusing on the upper and lower ends, resulting in the overall aggravation of erosion. Originality/value Considering the complexity of solid-liquid two-phase flow, this is the first time that the DEM method with added inter-particle forces and the DES turbulence model based on realizable k-epsilon has been used to study the flow characteristics and erosion mechanism of butterfly valves under fully open transportation conditions.


Sign in / Sign up

Export Citation Format

Share Document