scholarly journals The experiment research and engineering verification on the synergistic lubrication properties of silver and multiwalled carbon nanotubes

2019 ◽  
Vol 11 (9) ◽  
pp. 168781401987979
Author(s):  
Kang Yang ◽  
Hongru Ma ◽  
Ming Ma ◽  
Haibo Lin ◽  
Xiaoxue Li

A synergistic lubrication of silver and multiwalled carbon nanotubes was studied to minimize friction and decrease wear in the rotating mechanical components. Samples of TiAl alloy (TA), TiAl–10 wt% Ag (TAA), and TiAl–10 wt% Ag–1.0 wt% multiwalled carbon nanotubes (TAAM) were prepared using spark plasma sintering. The method of experimental test and engineered verification was used to explore the synergistic lubrication of silver and multiwalled carbon nanotubes in the TAAM sliding against Si3N4 balls on the ball-on-disk tribometer of No. HT-1000. The results showed that the friction and wear behavior of the TAA was more excellent than that of a TA. The TAAM obtained the smaller friction coefficient and wear rate in comparison to the TAA. The multiwalled carbon nanotubes were pulled out of the TAAM during sliding, were exposed on a wear scar, and were tightly combined with the silver to form a lubrication film. The lubrication film with silver and multiwalled carbon nanotubes resulted in an excellent friction reduction and wear-resistant property, and it caused the TAAM to obtain smaller friction and lower wear than those of the TA and TAA.

RSC Advances ◽  
2017 ◽  
Vol 7 (64) ◽  
pp. 40592-40599 ◽  
Author(s):  
Kang Yang ◽  
Hongru Ma ◽  
Xiyao Liu ◽  
Yangming Zhang ◽  
Qiang He

The necessity of reducing energy consumption and usage of material in aerospace and aviation industries drives the further optimization of friction and wear properties of TiAl alloys.


2016 ◽  
Vol 51 (8) ◽  
pp. 1099-1117 ◽  
Author(s):  
Lailesh Kumar ◽  
Syed Nasimul Alam ◽  
Santosh Kumar Sahoo

Aluminum (Al)-based metal matrix composites reinforced with multiwalled carbon nanotubes were developed by powder metallurgy route. The Al and multiwalled carbon nanotubes powder mixtures were consolidated under a load of 565 MPa followed by sintering at 550℃ for 2 h in inert atmosphere. Al–1, 2, and 3 wt.% multiwalled carbon nanotube composites were developed. In the present study, the microstructure, mechanical properties, sliding wear behavior, and crystallographic texture of various Al–multiwalled carbon nanotube composites were investigated. The multiwalled carbon nanotubes produced by low-pressure chemical vapor deposition technique and the various sintered composites were characterized using scanning electron microscope, high-resolution transmission electron microscope, X-ray diffraction, differential scanning calorimetry and thermogravimetric analysis, Raman spectroscopy, and Fourier transform infrared spectroscopy. A significant improvement in relative density, Vickers microhardness, and wear resistance of the composites up to addition of 2 wt.% of multiwalled carbon nanotubes was observed. The deterioration in these properties beyond 2 wt.% of multiwalled carbon nanotubes was possibly due to the agglomeration of multiwalled carbon nanotubes in the Al matrix. The tensile strength of Al–multiwalled carbon nanotube composites continuously decreases with the addition of multiwalled carbon nanotubes. The decrease in tensile strength can be attributed to the detrimental effect of Al4C3 formed at the interface of the Al matrix and the multiwalled carbon nanotubes which will cause premature failure of the composite. The addition of multiwalled carbon nanotubes altered the crystallographic texture of the composites. The residual stresses in the various composites were found to be compressive in nature and also show improvement up to addition of 2 wt.% multiwalled carbon nanotubes in the Al matrix.


2021 ◽  
pp. 1-27
Author(s):  
Homender Kumar ◽  
Harsha A P

Abstract This current study emphasized the tribological performances of COOH-functionalized multiwalled carbon nanotubes (MWCNTs) dispersed in two different grades of polyalphaolefins (i.e., PAO 4 and PAO 6). The friction and wear properties have been estimated using SRV 5 tribometer with “ball on disc” configuration. Prior to tribo-testing, MWCNTs were characterized by X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM), and Fourier transform infrared spectroscopy (FTIR). The varying dose of MWCNTs (0.025-0.15 wt.%) was incorporated into both PAO base oils to obtain the optimized lubrication behaviour. The test results revealed that PAO 4 exhibited a reduction in friction coefficient (~27%) and wear volume (~88 %) at a dose of 0.05 wt.% and 0.025 wt.% MWCNTs, respectively. However, in PAO 6, the minimum coefficient of friction and wear volume was obtained at a concentration of 0.075 wt.% and 0.05 wt. % of the additive. The results evidenced that PAO 6 based nanolubricants demonstrated the best frictional characteristics while attained the best anti-wear performance with PAO 4 based nanolubricants. For the better unveiling of the lubrication mechanism of MWCNTs, worn surfaces were characterized using various analytical techniques such as scanning electron microscopy (SEM), scan probe microscope (SPM), energy-dispersive X-ray spectroscopy (EDS) and X-ray photoelectron microscopy (XPS).


2012 ◽  
Vol 2 (6) ◽  
pp. 166-168 ◽  
Author(s):  
Dr.T.Ch.Madhavi Dr.T.Ch.Madhavi ◽  
◽  
Pavithra.P Pavithra.P ◽  
Sushmita Baban Singh Sushmita Baban Singh ◽  
S.B.Vamsi Raj S.B.Vamsi Raj ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document