scholarly journals Eccentric compression behavior of FRP-concrete-steel tubular composite columns

2021 ◽  
Vol 13 (9) ◽  
pp. 168781402110355
Author(s):  
Ni Zhang ◽  
Chenyang Zheng ◽  
Zhongwei Zhao ◽  
Bo Yang

FRP-concrete-steel tubular (FCS) composite columns are composed of the external tube, the internal steel tube, and the concrete between both tubes. They have been attracting the attention of many researchers due to their high ductility, lightweight, resistance to corrosion, and easiness of construction. However, there are few studies on FRP-concrete-steel tubular composite columns under eccentric load. To investigate the behavior of composite columns under the eccentric compression, a non-linear analysis program for FCS composite columns was compiled. The program was verified by existing tests, and the influences of eccentricity, FRP tube wall thickness, steel tube wall thickness, steel tube radius, slenderness ratio, and concrete strength grade on the eccentric compression performance were systematically analyzed. The results showed that the calculated results were in good agreement with the experimental results. It showed that the program can accurately reflect the deformation of FCS composite columns under various loads and estimate the ultimate load of FCS composite columns under eccentric compression. The eccentric ultimate load increased with the decrease of eccentricity and slenderness ratio, and with the increase of FRP tube wall thickness, steel tube wall thickness, and concrete strength grade. The ultimate eccentric load decreased with the increase of steel tube radius, but when the steel tube wall thickness reached a certain thickness, the ultimate eccentric load of FCS composite columns increases with the increase of steel tube radius. The conclusion can provide reference for the practical application of the structure.

2011 ◽  
Vol 71-78 ◽  
pp. 4203-4206
Author(s):  
Le Zhou ◽  
Hong Tao Liu

For the further study of bearing compressive capacity of GFRP tube filled with SHC(steel-reinforced high-strength concrete)columns subjected to eccentric compression, and analysis its whole bearing compressive process under eccentric compression. Based on the flat section assumption finite strip method, the calculating program of bearing eccentric compressive capacity of GFRP tube filled with SHC columns is proposed according to existing retrofit theory and related technical procedures. The relation curves of load-deformation is gotten using this calculating program, at the same time it can get the effect curves of concrete strength, slenderness ratio, eccentricity and containing bone rate to load-deformation. Calculations show that the ultimate bearing compressive capacity of composite column decreases with the increase of slenderness ratio, and elastic stage of component curve gradually shortens and stiffness gradually loses; The ultimate bearing compressive capacity of composite columns decreases with the increase of eccentricity; component ductility improves; the ultimate bearing compressive capacity of composite columns increases with the increase of concrete strength. The calculated results agree well with the experimental results and this study provides a basis for practical design.


2010 ◽  
Vol 163-167 ◽  
pp. 417-420
Author(s):  
Min Ding ◽  
Zhen Hua Hou ◽  
Xiu Gen Jiang ◽  
Yu Zhi He ◽  
Guang Kui Zhang ◽  
...  

The tests on thirteen specimens of casing joints of square steel tube were conducted to investigate the flexural behavior of the joints. And numerical simulation studies on that were carried out by ANSYS/LS-DYNA. On this basis, effects of tube wall thickness, tube edge length, and inserting depth on failure mode, ultimate flexural capacity and deformation of the joints were discussed. The results show that there are two types of failure modes, i.e., inside tube yield failure and outside tube shear failure. Ultimate flexural capacity and rigidity of the joints increased with the inserting depth increasing. The ultimate flexural capacity is proportional to tube shear strength, tube wall thickness, inserting depth, and tube edge length.


2012 ◽  
Vol 476-478 ◽  
pp. 1562-1567
Author(s):  
Le Zhou ◽  
Lian Guang Wang ◽  
Peng Niu ◽  
Hong Bin Nie

The whole bearing compressive process under eccentric compression is analyzed for the further study of bearing compressive capacity of GFRP tube filled with SHC(steel-reinforced high-strength concrete)columns subjected to eccentric compression. Based on finite strip method from the plane cross-section assumption, the computation program of bearing eccentric compressive capacity of GFRP tube filled with SHC columns is formulated according to the existing retrofit theory and related technical procedures. The relation curves of load-deformation, as well as the effect curves of concrete strength, slenderness ratio, eccentricity and containing bone rate to load-deformation is obtained by means of this calculating program. Calculations show that the ultimate bearing compressive capacity of composite column decreases with the increase of slenderness ratio, elastic stage of component curve gradually shortens and stiffness gradually loses; The ultimate bearing compressive capacity of composite columns decreases with the increase of eccentricity; component ductility improves; the ultimate bearing compressive capacity of composite columns increases with the increase of concrete strength. The calculated results agree well with the experimental results and provides a basis for practical design


2012 ◽  
Vol 256-259 ◽  
pp. 697-701
Author(s):  
Zhuo Han ◽  
Shao Fei Jiang ◽  
Zhi Ping Sun ◽  
Le Zhou

The objectives of this research were to investigate the structural behavior of slender steel reinforced concrete (Referred to as SRC)composite columns subjected to eccentric axial loading. The test consisted of 10 slender columns, with rectangular section160×180mm, and steel shape I10 encased in concrete. The stirrup spacing was 150 mm; its diameter was 6 mm. The diameter of longitudinal reinforcing bars was 10 mm. Details of the experimental investigations including description of the test columns, failure modes and mechanisms, strain characteristics, and load-deformation responses are discussed. Effects of concrete strength, slenderness of columns, and eccentricity of axial loads on the load-carrying capacity of slender column are then presented. Based on these results, a range of slenderness ratio and eccentric ratio of slender SRC column is proposed.


2011 ◽  
Vol 415-417 ◽  
pp. 1421-1426
Author(s):  
Xu Hong Zhang ◽  
Quan Quan Guo

The improvement effect of the external concrete to stability of the core steel-tube was demonstrated by the steel-tube replacement ratio through experimental study. The test results show that, with the steel-tube replacement ratio increasing, the ultimate bearing capacity of composite columns increased correspondingly, and the ductility of composite columns was improved obviously also. Therefore, the steel-tube replacement ratio should be involved in the formula for calculating the ultimate bearing capacity of composite columns. By finite element method and regression analysis, the slenderness ratio is amended by the steel-tube replacement ratio and the calculation results of the eccentric compression bearing capacity agreed well with the test results.


2010 ◽  
Vol 156-157 ◽  
pp. 1555-1558
Author(s):  
Min Ding ◽  
Zhen Hua Hou ◽  
Xiu Gen Jiang ◽  
Zi Chen Lin ◽  
Guang Kui Zhang ◽  
...  

The study on tension behavior of casing and dowel joint of square steel tube was carried out by using finite element analysis software ANSYS/LS-DYNA with consideration of geometric nonlinearity, material nonlinearity and contact nonlinearity. On this basis, the effects of inside tube wall thickness, main tube wall thickness, and inserting depth on failure mode, ultimate tensile load and deformation of casing and dowel joint of square steel tube was discussed. The results show that there are three types of failure modes, i.e., bolt failure, inside tube failure and main tube failure, when the joints are subjected to axial tension force. Compare to the joint with the same wall thickness of inside tube and main tube, the reduction of wall thickness of inside tube or main tube will weaken greatly the ultimate tensile load of the joint. The ultimate tensile load of casing and dowel joints is proportional to bolt shear strength, tube wall thickness, inserting depth, and tube edge length. The fruits are useful to the design and application of casing and dowel joints of square steel tube.


2011 ◽  
Vol 291-294 ◽  
pp. 1321-1326
Author(s):  
Ao Tian Ju ◽  
Shu Ying Qu ◽  
Xing Min Hou ◽  
Jin Tian Wang

The paper analyzes that hoop coefficients of the concrete-filled steel tube influence on dynamic response of the railway bridge height limit protective frame under impact load by using ANSYS/LS-DYNA. Change hoop coefficient of the concrete-filled steel tube structure by changing steel tube wall thickness. The result shows that with increase of steel tube wall thickness, the average impact force of protective frame will increase and the displacement and deformation will reduce, and protective frame can resist greater impact load. It will provide the reference for design of railway bridge height limit protective frame.


2010 ◽  
Vol 156-157 ◽  
pp. 1564-1567
Author(s):  
Min Ding ◽  
Zhen Hua Hou ◽  
Xiu Gen Jiang ◽  
Yu Zhi He ◽  
Guang Kui Zhang ◽  
...  

The numerical simulation studies on flexural behavior of casing joint of square steel tube were carried out by using finite element analysis software ANSYS/LS-DYNA with consideration of geometric nonlinearity, material nonlinearity and contact nonlinearity. On this basis, the effects of tube wall thickness, tube edge length, and inserting depth on failure mode, ultimate flexural capacity and deformation of casing joint of square steel tube was discussed. The results show that there are two types of failure modes, i.e., inside tube yield failure and outside tube shear failure, when the joints are subjected to lateral concentrated load. Ultimate flexural capacity and rigidity of casing joint of square steel tube increased with the inserting depth increasing. The ultimate flexural capacity of the joint is proportional to tube shear strength, tube wall thickness, inserting depth, and tube edge length. The fruits are useful to the design and application of casing joint of square steel tube.


2012 ◽  
Vol 446-449 ◽  
pp. 175-179 ◽  
Author(s):  
Jun Huang ◽  
Shao Bin Dai ◽  
Zhong Peng

Through orthogonal test, the main influencing factors to the ultimate bearing capacity, ductility and energy consuming ability of L-shaped concrete-filled rectangular composite steel tubular columns are studied. Research results show as follows: the most important factor in deciding the ultimate bearing capacity is the steel tube wall thickness; the most important factor in deciding the ductility factor is the steel tube wall thickness; the most important factor in deciding the equivalent viscous damping coefficient is the strength classes of concrete. At the same time the best level combination of these factors are got.


2020 ◽  
Vol 10 (7) ◽  
pp. 2517
Author(s):  
Yihuan Wang ◽  
Zhan Wang ◽  
Jianrong Pan ◽  
Peng Wang

Modified blind bolts (Hollo-Bolt) and a locally strengthened steel tube column in the panel zone were created to overcome the moment-resisting problem for the bolted connections between concrete-filled hollow section columns and open section beams and to enhance the performance of connections. The cyclic loading was conducted on a total of six modified anchored blind bolted flush end-plate connections to concrete-filled steel tube (CFST) columns. The key parameters investigated were the tube wall thickness, end-plate thickness, blind bolt anchorage method, and beam section. The failure mode, hysteretic behavior, strength, stiffness, ductility, and energy dissipation capacity of the connections were analyzed and evaluated with all details. The results indicated that connections with modified anchored blind bolts and locally strengthened steel tubes could avoid the premature failure of CFST column and exhibit an improved behavior with a favorable strength, stiffness, and stiffness degradation. The test observations reveal two representative failure modes, and the tube wall thickness and blind bolt anchorage method have a significant effect on the resultant failure mode. Moreover, the use of thin endplate and weak beam can effectively enhance the hysteretic behavior of joints, ductility, and energy dissipation capacity; and the change in anchoring method has little effect on the stiffness. Finite element (FE) analysis models were established for the aforementioned connections. The numerical models were validated against the experimental results and exhibited good agreement. Finally, based on the component method, an initial stiffness calculation method was established for the connections.


Sign in / Sign up

Export Citation Format

Share Document