scholarly journals Flight control law of unmanned aerial vehicles based on robust servo linear quadratic regulator and Kalman filtering

2017 ◽  
Vol 14 (1) ◽  
pp. 172988141668695 ◽  
Author(s):  
Yongfeng Zhi ◽  
Gaoshang Li ◽  
Qun Song ◽  
Ke Yu ◽  
Jun Zhang

A new flight control law for unmanned aerial vehicles based on robust servo linear quadratic regulator control and Kalman filtering is proposed. This flight control law has a simple structure with high dependability in engineering. The pitch angle controller, which is designed based on the robust servo linear quadratic regulator control, is given to show the flight control law. Simulation results show that the pitch angle controller works well under noise-free conditions. Finally, Kalman filtering is applied to the pitch angle controller under noisy conditions, and the simulation results show that the proposed method reduces the influence of noise.

2017 ◽  
Vol 9 (2) ◽  
pp. 111-123 ◽  
Author(s):  
Ricardo P Parada ◽  
A Tadeo Espinoza ◽  
Alejandro E Dzul ◽  
Francisco G Salas

In this paper, we present the design and implementation of two nonlinear observers: nonlinear extended state observer and sliding mode observer for estimating the pitch, yaw and roll angles and angular rates of a fixed-wing unmanned aerial vehicles system under a decoupled-reduced model in real flight experiments. A backstepping control law is designed for control in a decentralized way for altitude, yaw and roll of the airplane. This scheme allows us to test experimentally the feasibility of using the online estimated data from the observers in flight control, which is useful for increasing the robustness of the control and the safety of flight. Furthermore, a comparative analysis of the performance of both nonlinear observers is conducted.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Zaibin Chen ◽  
Hongguang Jia

This paper presents the control system design process of a novel tilt-rotor unmanned aerial vehicle (TRUAV). First, a new configuration scheme with the tilting rotors is designed. Then, the detailed nonlinear mathematical model is established, and the parameters are acquired from designed experiments and numerical analyses. For control design purposes, the dynamics equation is linearized around the hovering equilibrium point, and a control allocation method based on trim calculation is developed. To deal with the actuator saturation and uncertain disturbance problems for the novel TRUAV, an improved flight control law based on the combination of the robust servo linear quadratic regulator (RSLQR) optimal control and the extended state observer (ESO) is proposed. The designed flight control law has a simple structure with a high reliability in engineering. Simulations and hovering flight tests are carried out to verify the effectiveness of the mathematical model and the proposed control strategy.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4540
Author(s):  
Leszek Ambroziak ◽  
Maciej Ciężkowski

The following paper presents a method for the use of a virtual electric dipole potential field to control a leader-follower formation of autonomous Unmanned Aerial Vehicles (UAVs). The proposed control algorithm uses a virtual electric dipole potential field to determine the desired heading for a UAV follower. This method’s greatest advantage is the ability to rapidly change the potential field function depending on the position of the independent leader. Another advantage is that it ensures formation flight safety regardless of the positions of the initial leader or follower. Moreover, it is also possible to generate additional potential fields which guarantee obstacle and vehicle collision avoidance. The considered control system can easily be adapted to vehicles with different dynamics without the need to retune heading control channel gains and parameters. The paper closely describes and presents in detail the synthesis of the control algorithm based on vector fields obtained using scalar virtual electric dipole potential fields. The proposed control system was tested and its operation was verified through simulations. Generated potential fields as well as leader-follower flight parameters have been presented and thoroughly discussed within the paper. The obtained research results validate the effectiveness of this formation flight control method as well as prove that the described algorithm improves flight formation organization and helps ensure collision-free conditions.


Robotica ◽  
2021 ◽  
pp. 1-20
Author(s):  
Daegyun Choi ◽  
Anirudh Chhabra ◽  
Donghoon Kim

Summary This paper proposes an intelligent cooperative collision avoidance approach combining the enhanced potential field (EPF) with a fuzzy inference system (FIS) to resolve local minima and goal non-reachable with obstacles nearby issues and provide a near-optimal collision-free trajectory. A genetic algorithm is utilized to optimize parameters of membership function and rule base of the FISs. This work uses a single scenario containing all issues and interactions among unmanned aerial vehicles (UAVs) for training. For validating the performance, two scenarios containing obstacles with different shapes and several UAVs in small airspace are considered. Multiple simulation results show that the proposed approach outperforms the conventional EPF approach statistically.


2019 ◽  
Vol 9 (15) ◽  
pp. 3196 ◽  
Author(s):  
Lidia María Belmonte ◽  
Rafael Morales ◽  
Antonio Fernández-Caballero

Personal assistant robots provide novel technological solutions in order to monitor people’s activities, helping them in their daily lives. In this sense, unmanned aerial vehicles (UAVs) can also bring forward a present and future model of assistant robots. To develop aerial assistants, it is necessary to address the issue of autonomous navigation based on visual cues. Indeed, navigating autonomously is still a challenge in which computer vision technologies tend to play an outstanding role. Thus, the design of vision systems and algorithms for autonomous UAV navigation and flight control has become a prominent research field in the last few years. In this paper, a systematic mapping study is carried out in order to obtain a general view of this subject. The study provides an extensive analysis of papers that address computer vision as regards the following autonomous UAV vision-based tasks: (1) navigation, (2) control, (3) tracking or guidance, and (4) sense-and-avoid. The works considered in the mapping study—a total of 144 papers from an initial set of 2081—have been classified under the four categories above. Moreover, type of UAV, features of the vision systems employed and validation procedures are also analyzed. The results obtained make it possible to draw conclusions about the research focuses, which UAV platforms are mostly used in each category, which vision systems are most frequently employed, and which types of tests are usually performed to validate the proposed solutions. The results of this systematic mapping study demonstrate the scientific community’s growing interest in the development of vision-based solutions for autonomous UAVs. Moreover, they will make it possible to study the feasibility and characteristics of future UAVs taking the role of personal assistants.


2019 ◽  
Vol 91 (6) ◽  
pp. 880-885 ◽  
Author(s):  
Antoni Kopyt ◽  
Sebastian Topczewski ◽  
Marcin Zugaj ◽  
Przemyslaw Bibik

Purpose The purpose of this paper is to elaborate and develop an automatic system for automatic flight control system (AFCS) performance evaluation. Consequently, the developed AFCS algorithm is implemented and tested in a virtual environment on one of the mission task elements (MTEs) described in Aeronautical Design Standard 33 (ADS-33) performance specification. Design/methodology/approach Control algorithm is based on the Linear Quadratic Regulator (LQR) which is adopted to work as a controller in this case. Developed controller allows for automatic flight of the helicopter via desired three-dimensional trajectory by calculating iteratively deviations between desired and actual helicopter position and multiplying it by gains obtained from the LQR methodology. For the AFCS algorithm validation, the objective data analysis is done based on specified task accomplishment requirements, reference trajectory and actual flight parameters. Findings In the paper, a description of an automatic flight control algorithm for small helicopter and its evaluation methodology is presented. Necessary information about helicopter dynamic model is included. The test and algorithm analysis are performed on a slalom maneuver, on which the handling qualities are calculated. Practical implications Developed automatic flight control algorithm can be adapted and used in autopilot for a small helicopter. Methodology of evaluation of an AFCS performance can be used in different applications and cases. Originality/value In the paper, an automatic flight control algorithm for small helicopter and solution for the validation of developed AFCS algorithms are presented.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Ran Ji ◽  
Jian Wang ◽  
Chaojing Tang ◽  
Ruilin Li

The increasing use of civil unmanned aerial vehicles (UAVs) has the potential to threaten public safety and privacy. Therefore, airspace administrators urgently need an effective method to regulate UAVs. Understanding the meaning and format of UAV flight control commands by automatic protocol reverse-engineering techniques is highly beneficial to UAV regulation. To improve our understanding of the meaning and format of UAV flight control commands, this paper proposes a method to automatically analyze the private flight control protocols of UAVs. First, we classify flight control commands collected from a binary network trace into clusters; then, we analyze the meaning of flight control commands by the accumulated error of each cluster; next, we extract the binary format of commands and infer field semantics in these commands; and finally, we infer the location of the check field in command and the generator polynomial matrix. The proposed approach is validated via experiments on a widely used consumer UAV.


2013 ◽  
Vol 390 ◽  
pp. 388-392
Author(s):  
Ai Zhi Liu ◽  
Bao An Li ◽  
An Min Xi

In the view of the existing design for Ground Control Station(GCS) of Unmanned Aerial Vehicles(UAV) lacking of generality and ergonomics, a kind of ergonomic and general GCS is designed; the architecture of GCS system, which is general open and distributed, is constructed based on Gigabit Ethernet; a standard and general hardware platform is designed; software follows Standard Interface of STANAG 4586; the Shelter and Flight Control Console(FCC) are designed based on Ergonomics; that is an exploration for the design of GCS.


Sign in / Sign up

Export Citation Format

Share Document