scholarly journals Gaussian process regression-based robust free space detection for autonomous vehicle by 3-D point cloud and 2-D appearance information fusion

2017 ◽  
Vol 14 (4) ◽  
pp. 172988141771705 ◽  
Author(s):  
Zhipeng Xiao ◽  
Bin Dai ◽  
Hongdong Li ◽  
Tao Wu ◽  
Xin Xu ◽  
...  

Free space detection is crucial to autonomous vehicles while existing works are not entirely satisfactory. As cameras have many advantages on environment perception, a stereo vision-based robust free space detection method is proposed which mainly depends on geometry information and Gaussian process regression. In this work, in order to improve the performance by exploiting multiple source information, we apply Bayesian framework and conditional random field inference to fuse the multimodal information including 2-D image and 3-D point geometric information. Particularly, a Bayesian framework is used for multiple feature fusion to provide a normalized and flexible output. Gaussian process regression is used to automatically and incrementally regress the data, resulting enhanced performance. Finally, conditional random field with color and geometry constrains is applied to make the result more robust. In order to evaluate the proposed method, quantitative experiments on popular KITTI-road data set and qualitative experiments on our own campus data set are tested. The results show satisfactory and inspiring performance compared to the outstanding works and even are competitive to some relevant Lidar-based methods.

2020 ◽  
Author(s):  
Marc Philipp Bahlke ◽  
Natnael Mogos ◽  
Jonny Proppe ◽  
Carmen Herrmann

Heisenberg exchange spin coupling between metal centers is essential for describing and understanding the electronic structure of many molecular catalysts, metalloenzymes, and molecular magnets for potential application in information technology. We explore the machine-learnability of exchange spin coupling, which has not been studied yet. We employ Gaussian process regression since it can potentially deal with small training sets (as likely associated with the rather complex molecular structures required for exploring spin coupling) and since it provides uncertainty estimates (“error bars”) along with predicted values. We compare a range of descriptors and kernels for 257 small dicopper complexes and find that a simple descriptor based on chemical intuition, consisting only of copper-bridge angles and copper-copper distances, clearly outperforms several more sophisticated descriptors when it comes to extrapolating towards larger experimentally relevant complexes. Exchange spin coupling is similarly easy to learn as the polarizability, while learning dipole moments is much harder. The strength of the sophisticated descriptors lies in their ability to linearize structure-property relationships, to the point that a simple linear ridge regression performs just as well as the kernel-based machine-learning model for our small dicopper data set. The superior extrapolation performance of the simple descriptor is unique to exchange spin coupling, reinforcing the crucial role of choosing a suitable descriptor, and highlighting the interesting question of the role of chemical intuition vs. systematic or automated selection of features for machine learning in chemistry and material science.


2019 ◽  
Vol 27 (1) ◽  
pp. 22-30 ◽  
Author(s):  
Meizhi Ju ◽  
Nhung T H Nguyen ◽  
Makoto Miwa ◽  
Sophia Ananiadou

Abstract Objective This article describes an ensembling system to automatically extract adverse drug events and drug related entities from clinical narratives, which was developed for the 2018 n2c2 Shared Task Track 2. Materials and Methods We designed a neural model to tackle both nested (entities embedded in other entities) and polysemous entities (entities annotated with multiple semantic types) based on MIMIC III discharge summaries. To better represent rare and unknown words in entities, we further tokenized the MIMIC III data set by splitting the words into finer-grained subwords. We finally combined all the models to boost the performance. Additionally, we implemented a featured-based conditional random field model and created an ensemble to combine its predictions with those of the neural model. Results Our method achieved 92.78% lenient micro F1-score, with 95.99% lenient precision, and 89.79% lenient recall, respectively. Experimental results showed that combining the predictions of either multiple models, or of a single model with different settings can improve performance. Discussion Analysis of the development set showed that our neural models can detect more informative text regions than feature-based conditional random field models. Furthermore, most entity types significantly benefit from subword representation, which also allows us to extract sparse entities, especially nested entities. Conclusion The overall results have demonstrated that the ensemble method can accurately recognize entities, including nested and polysemous entities. Additionally, our method can recognize sparse entities by reconsidering the clinical narratives at a finer-grained subword level, rather than at the word level.


Symmetry ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 669 ◽  
Author(s):  
Eunseo Oh ◽  
Hyunsoo Lee

The developments in the fields of industrial Internet of Things (IIoT) and big data technologies have made it possible to collect a lot of meaningful industrial process and quality-based data. The gathered data are analyzed using contemporary statistical methods and machine learning techniques. Then, the extracted knowledge can be used for predictive maintenance or prognostic health management. However, it is difficult to gather complete data due to several issues in IIoT, such as devices breaking down, running out of battery, or undergoing scheduled maintenance. Data with missing values are often ignored, as they may contain insufficient information from which to draw conclusions. In order to overcome these issues, we propose a novel, effective missing data handling mechanism for the concepts of symmetry principles. While other existing methods only attempt to estimate missing parts, the proposed method generates a whole set of data set using Gaussian process regression and a generative adversarial network. In order to prove the effectiveness of the proposed framework, we examine a real-world, industrial case involving an air pressure system (APS), where we use the proposed method to make quality predictions and compare the results with existing state-of-the-art estimation methods.


2014 ◽  
Vol 67 (4) ◽  
pp. 603-615 ◽  
Author(s):  
Hongmei Chen ◽  
Xianghong Cheng ◽  
Haipeng Wang ◽  
Xu Han

Gaussian process regression (GPR) is used in a Spare-grid Quadrature Kalman filter (SGQKF) for Strap-down Inertial Navigation System (SINS)/odometer integrated navigation to bridge uncertain observation outages and maintain an estimate of the evolving SINS biases. The SGQKF uses nonlinearized dynamic models with complex stochastic nonlinearities so the performance degrades significantly during observation outages owing to the uncertainties and noise. The GPR calculates the residual output after factoring in the contributions of the parametric model that is used as a nonlinear SINS error predictor integrated into the SGQKF. The sensor measurements and SINS output deviations from the odometer are collected in a data set during observation availability. The GPR is then applied to predict SINS deviations from the odometer and then the predicted SINS deviations are fed to the SGQKF as an actual update to estimate all SINS biases during observation outages. We demonstrate our method's effectiveness in bridging uncertain observation outages in simulations and in real road tests. The results agree with the theoretical analysis, which demonstrate that SGQKF using GPR can maintain an estimate of the evolving SINS biases during signal outages.


2021 ◽  
Author(s):  
Ryan Volz ◽  
Jorge L. Chau ◽  
Philip J. Erickson ◽  
Juha P. Vierinen ◽  
J. Miguel Urco ◽  
...  

Abstract. Mesoscale dynamics in the mesosphere and lower thermosphere (MLT) region have been difficult to study from either ground- or satellite-based observations. For understanding of atmospheric coupling processes, important spatial scales at these altitudes range between tens to hundreds of kilometers in the horizontal plane. To date, this scale size is challenging observationally, and so structures are usually parameterized in global circulation models. The advent of multistatic specular meteor radar networks allows exploration of MLT mesocale dynamics on these scales using an increased number of detections and a diversity of viewing angles inherent to multistatic networks. In this work, we introduce a four dimensional wind field inversion method that makes use of Gaussian process regression (GPR), a non-parametric and Bayesian approach. The method takes measured projected wind velocities and prior distributions of the wind velocity as a function of space and time, specified by the user or estimated from the data, and produces posterior distributions for the wind velocity. Computation of the predictive posterior distribution is performed on sampled points of interest and is not necessarily regularly sampled. The main benefits of the GPR method include this non-gridded sampling, the built-in statistical uncertainty estimates, and the ability to horizontally-resolve winds on relatively small scales. The performance of the GPR implementation has been evaluated on Monte Carlo simulations with known distributions using the same spatial and temporal sampling as one day of real meteor measurements. Based on the simulation results we find that the GPR implementation is robust, providing wind fields that are statistically unbiased and with statistical variances that depend on the geometry and are proportional to the prior velocity variances. A conservative and fast approach can be straightforwardly implemented by employing overestimated prior variances and distances, while a more robust but computationally intensive approach can be implemented by employing training and fitting of model parameters. The latter GPR approach has been applied to a 24-hour data set and shown to compare well to previously used homogeneous and gradient methods. Small scale features have reasonably low statistical uncertainties, implying geophysical wind field horizontal structures as low as 20–50 km. We suggest that this GPR approach forms a suitable method for MLT regional and weather studies.


Author(s):  
Osman Mamun ◽  
Kirsten Winther ◽  
Jacob Boes ◽  
Thomas Bligaard

For high-throughput screening of materials for heterogeneous catalysis, scaling relations provides an efficient scheme to estimate the chemisorption energies of hydrogenated species. However, conditioning on a single descriptor ignores the model uncertainty and leads to sub optimal prediction of the chemisorption energy. In this paper, we extend the single descriptor linear scaling relation to a multi descriptor linear regression models to leverage the correlation between adsorption energy of any two pair of adsorbates. With a large dataset, we use Bayesian Information Criteria (BIC) as the model evidence to select the best linear regression model that are derived from non-informative priors. Furthermore, Gaussian Process Regression (GPR) based on the meaningful convolution of physical properties of the metal-adsorbate complex can be used to predict the baseline residual of the selected model. This integrated Bayesian model selection and Gaussian process regression, dubbed as residual learning, can achieve performance comparable to standard DFT error (0.1 eV) for most adsorbate system. For sparse and small datasets, we propose an ad hoc Bayesian Model Averaging (BMA) approach to make a robust prediction. With this Bayesian framework, we significantly reduce the model uncertainty and improve the prediction accuracy. The possibilities of the framework for high-throughput catalytic materials exploration in a realistic setting is illustrated using large and small sets of both dense and sparse simulated dataset generated from a public database of bimetallic alloys available in Catalysis-Hub.org.


2020 ◽  
Author(s):  
Marc Philipp Bahlke ◽  
Natnael Mogos ◽  
Jonny Proppe ◽  
Carmen Herrmann

Heisenberg exchange spin coupling between metal centers is essential for describing and understanding the electronic structure of many molecular catalysts, metalloenzymes, and molecular magnets for potential application in information technology. We explore the machine-learnability of exchange spin coupling, which has not been studied yet. We employ Gaussian process regression since it can potentially deal with small training sets (as likely associated with the rather complex molecular structures required for exploring spin coupling) and since it provides uncertainty estimates (“error bars”) along with predicted values. We compare a range of descriptors and kernels for 257 small dicopper complexes and find that a simple descriptor based on chemical intuition, consisting only of copper-bridge angles and copper-copper distances, clearly outperforms several more sophisticated descriptors when it comes to extrapolating towards larger experimentally relevant complexes. Exchange spin coupling is similarly easy to learn as the polarizability, while learning dipole moments is much harder. The strength of the sophisticated descriptors lies in their ability to linearize structure-property relationships, to the point that a simple linear ridge regression performs just as well as the kernel-based machine-learning model for our small dicopper data set. The superior extrapolation performance of the simple descriptor is unique to exchange spin coupling, reinforcing the crucial role of choosing a suitable descriptor, and highlighting the interesting question of the role of chemical intuition vs. systematic or automated selection of features for machine learning in chemistry and material science.


2019 ◽  
Vol 127 (4) ◽  
pp. 959-973 ◽  
Author(s):  
Seung Ho Yeom ◽  
Ji Sung Na ◽  
Hwi-Dong Jung ◽  
Hyung-Ju Cho ◽  
Yoon Jeong Choi ◽  
...  

Obstructive sleep apnea (OSA) is a common sleep breathing disorder. With the use of computational fluid dynamics (CFD), this study provides a quantitative standard for accurate diagnosis and effective surgery based on the investigation of the relationship between airway geometry and aerodynamic characteristics. Based on computed tomography data from patients having normal geometry, 4 major geometric parameters were selected and a total of 160 idealized cases were modeled and simulated. We created a predictive model using Gaussian process regression (GPR) through a data set obtained through numerical method. The results demonstrated that the mean accuracy of the overall GPR model was ~72% with respect to the CFD results for the realistic upper airway model. A support vector machine model was also used to identify the degree of OSA symptoms in patients as normal-mild and moderate and severe. We achieved an accuracy of 82.5% with the training data set and an accuracy of 80% with the test data set. NEW & NOTEWORTHY There have been many studies on the analysis of obstructive sleep apnea (OSA) through computational fluid dynamics and finite element analysis. However, these methods are not useful for practical medical applications because they have limited information for OSA symptom. This study employs the machine learning algorithm to predict flow characteristics quickly and to determine the symptoms of the patient's OSA. The overall Gaussian process regression model's mean accuracy was ~72%, and the accuracy for the classification of OSA was >80%.


Sign in / Sign up

Export Citation Format

Share Document