scholarly journals Inverse kinematics of mobile manipulators based on differential evolution

2018 ◽  
Vol 15 (1) ◽  
pp. 172988141775273 ◽  
Author(s):  
Carlos López-Franco ◽  
Jesús Hernández-Barragán ◽  
Alma Y. Alanis ◽  
Nancy Arana-Daniel ◽  
Michel López-Franco

The solution of the inverse kinematics of mobile manipulators is a fundamental capability to solve problems such as path planning, visual-guided motion, object grasping, and so on. In this article, we present a metaheuristic approach to solve the inverse kinematic problem of mobile manipulators. In this approach, we represent the robot kinematics using the Denavit–Hartenberg model. The algorithm is able to solve the inverse kinematic problem taking into account the mobile platform. The proposed approach is able to avoid singularities configurations, since it does not require the inversion of a Jacobian matrix. Those are two of the main drawbacks to solve inverse kinematics through traditional approaches. Applicability of the proposed approach is illustrated using simulation results as well as experimental ones using an omnidirectional mobile manipulator.

2015 ◽  
Vol 772 ◽  
pp. 455-460 ◽  
Author(s):  
Adrian Olaru ◽  
Serban Olaru ◽  
Niculae Mihai

One of the most precise method solving the inverse kinematics problem in the redundant cases of the robots is the coupled method. The proposed method use the Iterative Pseudo Inverse Jacobian Matrix Method (IPIJMM) coupled with the proper Sigmoid Bipolar Hyperbolic Tangent Neural Network with Time Delay and Recurrent Links (SBHTNN-TDRL). One precise solution of the inverse kinematics problem is very difficult to find, when the degree of freedom increase and in many cases this is impossible because the redundant solutions. In all these cases must be used the numerical iterative approximation, like the proposed method, with artificial intelligence algorithm. The paper describe all the steps in one case study to obtain the space circle curve in different planes by using one arm type robot and the proposed method. The errors of the space movement of the robot end-effecter, after applying the proposed method, was less than 0,01. The presented method is general and it can be used in all other robots types and for all other conventional and unconventional space curves.


Robotica ◽  
1996 ◽  
Vol 14 (3) ◽  
pp. 329-337 ◽  
Author(s):  
Thomas Kastenmeier ◽  
Franz J. Vesely

SUMMARYMultilink robot arms are geometrically similar to chain molecules. We investigate the performance of molecular simulation methods, combined with stochastic methods for optimization, when applied to problems of robotics. An efficient and flexible algorithm for solving the inverse kinematic problem for redundant robots in the presence of obstacle's (and other constraints) is suggested. This “Constrained Kinematics/Stochastic Optimization” (CKSO) method is tested on various standard problems.


Robotica ◽  
2014 ◽  
Vol 33 (4) ◽  
pp. 747-767 ◽  
Author(s):  
Masayuki Shimizu

SUMMARYThis paper proposes an analytical method of solving the inverse kinematic problem for a humanoid manipulator with five degrees-of-freedom (DOF) under the condition that the target orientation of the manipulator's end-effector is not constrained around an axis fixed with respect to the environment. Since the number of the joints is less than six, the inverse kinematic problem cannot be solved for arbitrarily specified position and orientation of the end-effector. To cope with the problem, a generalized unconstrained orientation is introduced in this paper. In addition, this paper conducts the singularity analysis to identify all singular conditions.


2016 ◽  
Vol 10 (2) ◽  
pp. 87-91
Author(s):  
Jarosław Szrek ◽  
Artur Muraszkowski ◽  
Przemysław Sperzyński

Abstract The aim of this article is to present the concept of wheel-legged mobile manipulator, which is a combination of mobile platform with specially selected suspension system and a manipulator. First, a literature review was performed and own solution proposed. The kinematic structure of manipulator, selected simulation results, physical model and the concept of the control system has been presented. Geometry synthesis was used to design basic dimension. Structural synthesis was performed according to the intermediate chain method. Simulations were performed using the multibody dynamics simulation software. New approach in the field of the mobile manipulators was presented as a result.


2018 ◽  
Vol 19 (11) ◽  
pp. 714-724
Author(s):  
I. N. Ibrahim

This paper focuses on the real-time kinematics solution of an aerial manipulator mounted on an aerial vehicle, the vehicle’s motion isn’t considered in this study. Robot kinematics using Denavit-Hartenberg model  was presented. The fundamental scope of this paper is to obtain a global online solution of design configurations with a weighted specific objective function and imposed constraints are fulfilled. Acknowledging the forward kinematics equations of the manipulator; the trajectory planning issue is consequently assigned to on an optimization issue. Several types of computing methods are documented in the literature and are well-known for solving complicated nonlinear functions. Accordingly, this study suggests two kinds of artificial intelligent techniques which are regarded as search methods; they are differential evolution (DE) method and modified shuffled frog-leaping algorithm (MSFLA). These algorithms are constrained metaheuristic and population-based approaches. moreover, they are able to solve the inverse kinematics problem taking into account the mobile platform additionally avoiding singularities since it doesn’t demand the inversion of a Jacobian matrix. Simulation results are carried out for trajectory planning of 6 degree-of-freedom (DOF) kinematically aerial manipulator and confirmed the feasibility and effectiveness of the supposed methods.


2021 ◽  
Vol 343 ◽  
pp. 08004
Author(s):  
Mihai Crenganis ◽  
Alexandru Barsan ◽  
Melania Tera ◽  
Anca Chicea

In this paper, a dynamic analysis for a 5 degree of freedom (DOF) robotic arm with serial topology is presented. The dynamic model of the robot is based on importing a tri-dimensional CAD model of the robot into Simulink®-Simscape™-Multibody™. The dynamic model of the robot in Simscape is a necessary and important step in development of the mechanical structure of the robot. The correct choice of the electric motors is made according to the resistant joint torques determined by running the dynamic analysis. One can import complete CAD assemblies, including all masses, inertias, joints, constraints, and tri-dimensional geometries, into the model block. The first step for executing a dynamic analysis is to resolve the Inverse Kinematics (IK) problem for the redundant robot. The proposed method for solving the inverse kinematic problem for this type of structure is based on a geometric approach and validated afterwards using SimScape Multibody. Solving the inverse kinematics problem is a mandatory step in the dynamic analysis of the robot, this is required to drive the robot on certain user-imposed trajectories. The dynamic model of the serial robot is necessary for the simulation of motion, analysis of the robot’s structure and design of optimal control algorithms.


Author(s):  
Louis Perreault ◽  
Clément M. Gosselin

Abstract This paper presents an algorithm for the solution of the inverse kinematics of a serial redundant manipulator with one (or more) locked joint(s). To this end, a general procedure is developed for the determination of the equivalent Denavit-Hartenberg parameters of a serial manipulator with locked joints. This procedure can be applied to any serial architecture. The solution of the inverse kinematic problem for the three cases which can arise is then addressed. An example of the application of the method to a SARCOS 7-DOF manipulator is also given.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Ying Kong ◽  
Ruiyang Zhang ◽  
Yunliang Jiang ◽  
Xiaoyun Xia

For repeatable motion of redundant mobile manipulators, the flexible base platform and the redundant manipulator have to be returned to the desired initial position simultaneously after completing the given tasks. To remedy deviations between initial position and desired position of each kinematic joint angle, a special kind of repeatable optimization for kinematic energy minimization based on terminal-time Zhang neural network (TTZNN) with finite-time convergence is proposed for inverse kinematics of mobile manipulators. It takes the advantages that each joint of the manipulator is required to return to the desired initial position not considering the initial orientation of itself for realizing repeatable kinematics control. Unlike the existed training methods, such an optimization of kinematic energy scheme based on TTZNN can not only reduce the convergent position error of each joint to zero in finite time, but also improve the convergent precision. Theoretical analysis and verifications show that the proposed optimal kinematic energy scheme accelerates the convergent rate, which is tended to be applied in practical robot kinematics. Simulation results on the manipulator with three mobile wheels substantiate the timeliness and repetitiveness of the proposed optimization scheme.


Robotica ◽  
2016 ◽  
Vol 34 (8) ◽  
pp. 1734-1753 ◽  
Author(s):  
Jin Seob Kim ◽  
Gregory S. Chirikjian

SUMMARYWe present two methods to find all the possible conformations of short six degree-of-freedom segments of biopolymers which satisfy end constraints in position and orientation. One of our methods is motivated by inverse kinematic solution techniques which have been developed for “general” 6R serial robotic manipulators. However, conventional robot kinematics methods are not directly applicable to the geometry of polymers, which can be treated as a degenerate case where all the “link lengths” are zero. Here, we propose a method which extends the elimination method of Kohli and Osvatic. This method can be applied directly to the geometry of biopolymers. We also propose a heuristic method based on a Lie-group-theoretic description. In this method, we utilize inverse iterations of the Jacobian matrix to obtain all conformations which satisfy end constraints. This can be easily implemented for both the general 6R manipulator and polymers. Although the extended elimination method is computationally faster than the Jacobian method, in cases where some of the joint angles are 180° (i.e., where the elimination method fails), we combine these two methods effectively to obtain the full set of inverse kinematic solutions. We demonstrate our approach with several numerical examples.


Sign in / Sign up

Export Citation Format

Share Document