scholarly journals Leader–follower close formation control for underactuated surface vessel via terminal hierarchical sliding mode

2020 ◽  
Vol 17 (3) ◽  
pp. 172988142092101
Author(s):  
Huizi Chen ◽  
Yan Peng ◽  
Yueying Wang ◽  
Shaorong Xie ◽  
Huaicheng Yan

This article is concerned with the close formation problem of multiple underactuated surface vessels in the presence of model uncertainties, roll motion, and environmental disturbances. To effectively address these issues, a novel control scheme considering roll stabilization is designed by combing terminal hierarchical sliding mode control with Lyapunov direct method, which can quickly ensure a small formation error in a finite-time for vessels. Meanwhile, a new switching gain adaptation mechanism is utilized to reduce chattering and acquire faster adaptive rate without the excessive temporary tracking errors. Radial basis function neural network and finite-time observer are employed to deal with model uncertainties and disturbances, respectively. Furthermore, dynamic surface control technology is introduced to reduce the complexity of control law. Various simulations and comparison results are conducted to verify the effectiveness of theoretical results.

Author(s):  
Chunqiang Wu ◽  
Meijiao Zhao ◽  
Cheng Min ◽  
Yueying Wang ◽  
Jun Luo

In this paper, a leader–follower formation control strategy is presented based on adaptive neural network and disturbance observer, which is aimed at resolving model uncertainties as well as the time-varying disturbances for autonomous underactuated surface vessels. The model uncertainties which can be expressed by unknown nonlinear functions are approximated and compensated by the adaptive neural network. The disturbance observer introduced can estimate time-varying disturbances and compensate them to the feedforward control loop, so as to make the external time-varying disturbances suppressed and the robustness of controller against the disturbances improved. The dynamic surface control technology is applied in the procedure of designing the controller through utilizing the backstepping method, which solves the computational explosion of the derivative of virtual control signals. Finally, through Lyapunov analysis, the stability of adaptive neural formation control system is proved and all the error signals uniformly converge to a very small range ultimately. The excellent performance of the presented formation control strategy is demonstrated through numerical simulations.


Author(s):  
Cheng Liu ◽  
Zaojian Zou ◽  
Jianchuan Yin

Trajectory tracking is an importance practice in ship motion control field. It attracts more attention recently due to its difficulties. Trajectory tracking requires the ship to arrive pinpoint location at exact time. It is a underactuated system because the degrees of freedom of control inputs are fewer than the degrees of freedom that needed to be controlled. In this paper, a hierarchical sliding mode controller and a common sliding mode controller are proposed to deal with the trajectory tracking problem of underactuated surface vessels. Simulation results validate the tracking performance of the proposed controllers. The closed-loop stability is testified by the Lyapunov stability theorem.


Author(s):  
Zhenlin Zhang ◽  
Ke Zhang ◽  
Meibo Lyu ◽  
Minghao Wang ◽  
Zhiguo Han

Under the missile speed is uncontrollable, a design method of multi-missile formation flight controller based on the sliding mode variable structure control theory and adaptive dynamic surface control theory is proposed. Firstly, according to the relative position of the leader and the follower in the inertial frame, the tracking error model for the relative position and the expected relative position between the leader and the follower is obtained, and the multi-missile formation control system in the inertial coordinate system is obtained. Secondly, in order to obtain the expression of the formation control system in the ballistic coordinate system, the acceleration of the missile in the ballistic coordinate system is converted to the inertial coordinate system. Combining with the tracking of the relative position and the desired relative position of the leader and the followers, we can obtain the simplified error model for the formation control system. Then the sliding mode variable structure control theory and the adaptive dynamic surface control theory are used to design the formation controllers for the leader and follower missiles respectively, and the stability of the present controller is analysed via the Lyapunov stability theory. Finally, the designed formation controllers are used for the leader and follower missiles to simulate the parameters. The results verify the feasibility and effectiveness of the present method.


2019 ◽  
Vol 2019 ◽  
pp. 1-17
Author(s):  
Shang Jiang ◽  
Fuqing Tian ◽  
Shiyan Sun

In the terminal guidance section of large caliber naval gun-guided projectile while striking nearshore maneuvering target, an integrated guidance and control (IGC) method based on an adaptive fuzzy and block dynamic surface sliding mode (AFCBDSM) was proposed with multiple constraints, including the impact angle, control limitations, and limited measurement of the line of sight (LOS) angle rate. The strict feedback cascade model of rolling-guided projectile IGC in space was constructed, and the extended state observer (ESO) was used to estimate the LOS angle rate and uncertain disturbances inside and outside the system, such as target maneuvering, model errors, and wind. A nonsingular terminal sliding mode (NTSM) was designed to zero the LOS angle tracking errors and LOS angle rate in finite time, with the adaptive exponential reaching law. The cascade system was effectively stabilized by the block dynamic surface sliding mode, which prevented differential explosions. To compensate for the saturated nonlinearity of canard control constraints, an adaptive Nussbaum gain function was adopted. The switching chatter of the block dynamic surface sliding mode was reduced through adaptive fuzzy control. Proven by Lyapunov theory, the LOS angle tracking error and LOS angle rate were convergent in finite time, the closed-loop system was uniformly ultimately bounded (UUB), and the system states could be made arbitrarily small at the steady state. Hardware-in-the-loop simulation (HILS) experiments showed that the AFCBDSM provided the guided projectile with good guidance performance while striking targets with different maneuvering forms.


Algorithms ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 315
Author(s):  
Yuxiao Niu ◽  
Hanyu Ban ◽  
Haichao Zhang ◽  
Wenquan Gong ◽  
Fang Yu

In this work, a tracking control strategy is developed to achieve finite-time stability of quadrotor Unmanned Aerial Vehicles (UAVs) subject to external disturbances and parameter uncertainties. Firstly, a finite-time extended state observer (ESO) is proposed based on the nonsingular terminal sliding mode variable to estimate external disturbances to the position subsystem. Then, utilizing the information provided by the ESO and the nonsingular terminal sliding mode control (NTSMC) technique, a dynamic surface controller is proposed to achieve finite-time stability of the position subsystem. By conducting a similar step for the attitude subsystem, a finite-time ESO-based dynamic surface controller is proposed to carry out attitude tracking control of the quadrotor UAV. Finally, the performance of the control algorithm is demonstrated via a numerical simulation.


Author(s):  
Bo Wang ◽  
Sergey Nersesov ◽  
Hashem Ashrafiuon

Abstract Developing distributed control algorithms for multi-agent systems is difficult when each agent is modeled as a nonlinear dynamical system. Moreover, the problem becomes far more complex if the agents do not have sufficient number of actuators to track any arbitrary trajectory. In this paper, we present the first fully decentralized approach to formation control for networks of underactuated surface vessels. The vessels are modeled as three degree of freedom planar rigid bodies with two actuators. Algebraic graph theory is used to model the network as a directed graph and employing a leader-follower model. We take advantage of the cascade structure of the combined nonlinear kinematic and dynamic model of surface vessels and develop a reduced-order error dynamic model using a state transformation definition. The error dynamics and consequently all system states are then stabilized using sliding mode control approach. It is shown that the stabilization of the reduced-order error dynamics guarantees uniform global asymptotic stability of the closed-loop system subject to bounded uncertainties. The proposed control method can be implemented in directed time-invariant communication networks without the availability of global position measurements for any of the vehicles participating in the network. An example of a a network of five surface vessels is simulated to verify the effective performance of the proposed control approach.


Sign in / Sign up

Export Citation Format

Share Document