The training-specific adaptations resulting from resistance training, gymnastics and plyometric training, and non-training in adolescent athletes

2017 ◽  
Vol 12 (6) ◽  
pp. 762-773 ◽  
Author(s):  
Josh L Secomb ◽  
Oliver R Farley ◽  
Sophia Nimphius ◽  
Lina Lundgren ◽  
Tai T Tran ◽  
...  

Although previous research has investigated the training-specific adaptations to training in adults, there is a paucity of research aimed at investigating these adaptations in adolescent athletes. As such, adolescent athletes’ training-specific adaptations from three different training interventions were investigated in this study. Sixteen adolescent athletes participated in this study, whereby eight performed both training interventions and eight the non-training control. Pre- and post-testing was performed for each intervention with the testing battery: ultrasonography of the vastus lateralis and lateral gastrocnemius, countermovement jump, squat jump, and isometric mid-thigh pull. The resistance training group had large significant increases in isometric mid-thigh pull relative peak force ( p < 0.01, g = 0.85 (−0.01, 1.71)) and vastus lateralis fascicle length ( p = 0.04, g = 0.94 (0.07, 1.80)). The gymnastics and plyometric group demonstrated large significant changes in vastus lateralis pennation angle ( p = 0.03, g = −0.94 (−1.81, −0.08)) and fascicle length ( p = 0.03, g = 1.07 (0.19, 1.95)), and moderate significant increases in lateral gastrocnemius thickness ( p = 0.01, g = 0.63 (−0.21, 1.47)) and eccentric leg stiffness ( p = 0.03, g = 0.60 (−0.24, 1.44)). No significant changes were observed for any variables in the non-training group. The resistance training evoked increases in lower-body force producing capabilities, whereas the gymnastics and plyometric training evoked changes in muscle structure and inherent muscle qualities.

1999 ◽  
Vol 86 (3) ◽  
pp. 909-914 ◽  
Author(s):  
Izumi Tabata ◽  
Youji Suzuki ◽  
Tetsuo Fukunaga ◽  
Toshiko Yokozeki ◽  
Hiroshi Akima ◽  
...  

This study assessed the effects of inactivity on GLUT-4 content of human skeletal muscle and evaluated resistance training as a countermeasure to inactivity-related changes in GLUT-4 content in skeletal muscle. Nine young men participated in the study. For 19 days, four control subjects remained in a −6° head-down tilt at all times throughout bed rest, except for showering every other day. Five training group subjects also remained at bed rest, except during resistance training once in the morning. The resistance training consisted of 30 isometric maximal voluntary contractions for 3 s each; leg-press exercise was used to recruit the extensor muscles of the ankle, knee, and hip. Pauses (3 s) were allowed between bouts of maximal contraction. Muscle biopsy samples were obtained from the lateral aspect of vastus lateralis (VL) muscle before and after the bed rest. GLUT-4 content in VL muscle of the control group was significantly decreased after bed rest (473 ± 48 vs. 398 ± 66 counts ⋅ min−1 ⋅ μg membrane protein−1, before and after bed rest, respectively), whereas GLUT-4 significantly increased in the training group with bed rest (510 ± 158 vs. 663 ± 189 counts ⋅ min−1 ⋅ μg membrane protein−1, before and after bed rest, respectively). The present study demonstrated that GLUT-4 in VL muscle decreased by ∼16% after 19 days of bed rest, and isometric resistance training during bed rest induced a 30% increase above the value of GLUT-4 before bed rest.


2015 ◽  
Vol 40 (1) ◽  
pp. 99-102 ◽  
Author(s):  
Kevin Murach ◽  
Cory Greever ◽  
Nicholas D. Luden

We assessed lateral gastrocnemius (LG) and vastus lateralis (VL) architecture in 16 recreational runners before and after 12 weeks of marathon training. LG fascicle length decreased 10% while pennation angle increased 17% (p < 0.05). There was a significant correlation between diminished blood lactate levels and LG pennation angle change (r = 0.90). No changes were observed in VL. This is the first evidence that run training can modify skeletal muscle architectural features.


Sports ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 41 ◽  
Author(s):  
Angeliki-Nikoletta Stasinaki ◽  
Nikolaos Zaras ◽  
Spyridon Methenitis ◽  
Gregory Bogdanis ◽  
Gerasimos Terzis

The aim of the study was to investigate the rate of force development (RFD) and muscle architecture early adaptations in response to training with fast- or slow-velocity eccentric squats. Eighteen young novice participants followed six weeks (two sessions/week) of either fast-velocity (Fast) or slow-velocity (Slow) squat eccentric-only training. Fast eccentric training consisted of nine sets of nine eccentric-only repetitions at 70% of 1-RM with <1 s duration for each repetition. Slow eccentric training consisted of five sets of six eccentric-only repetitions at 90% of 1-RM with ~4 sec duration for each repetition. Before and after training, squat 1-RM, countermovement jump (CMJ), isometric leg press RFD, and vastus lateralis muscle architecture were evaluated. Squat 1-RM increased by 14.5 ± 7.0% (Fast, p < 0.01) and by 5.4 ± 5.1% (Slow, p < 0.05). RFD and fascicle length increased significantly in the Fast group by 10–19% and 10.0 ± 6.2%, p < 0.01, respectively. Muscle thickness increased only in the Slow group (6.0 ± 6.8%, p < 0.05). Significant correlations were found between the training induced changes in fascicle length and RFD. These results suggest that fast eccentric resistance training may be more appropriate for increases in rapid force production compared to slow eccentric resistance training, and this may be partly due to increases in muscle fascicle length induced by fast eccentric training.


2020 ◽  
Vol 5 (1) ◽  
pp. 59-71
Author(s):  
Sandip Sankar Ghosh ◽  
Raju Biswas

The purpose of the present study was to compare the effectiveness of Plyometric Training (PT) and Resistance Training (RT) for improving speed ability of the Athletes. Total thirty six (N = 36) district level athletes were randomly selected. All the subjects were divided into three equal groups: i) Resistance Training Group (RTG) as Experimental Group-I, ii) Plyometric Training Group (PTG) as Experimental Group-II and iii) Control Group (CG). Experimental group-I underwent resistance training whereas experimental group-II underwent plyometric training for eight weeks. But the control group did not involve in any of the above treatments. In the present study speed ability was measured through 60 yard dash. To draw the statistical inference analysis of covariance (ANCOVA) was used followed by Tukey’s LSD test as post hoc test. Both RTG and PTG improved significantly with respect to the CG in speed ability. Significant difference was also observed between RTG and PTG in speed ability. It was also confirmed that the PTG improved better than the RTG in speed ability. From the above findings it can be concluded that PT is more effective training means than RT to improve the speed ability of the athlete.


2018 ◽  
Author(s):  
Gerald T. Mangine ◽  
Michael J. Redd ◽  
Adam M. Gonzalez ◽  
Jeremy R. Townsend ◽  
Adam J Wells ◽  
...  

AbstractResistance training may differentially affect morphological adaptations along the length of uni-articular and bi-articular muscles. The purpose of this study was to compare changes in muscle morphology along the length of the rectus femoris (RF) and vastus lateralis (VL) in response to resistance training. Following a 2-wk preparatory phase, 15 resistance-trained men (24.0 ± 3.0 y, 90.0 ± 13.8 kg, 174.9 ± 20.7 cm) completed pre-training (PRE) assessments of muscle thickness (MT), pennation angle (PA), cross-sectional area (CSA), and echo-intensity in the RF and VL at 30, 50, and 70% of each muscle’s length; fascicle length (FL) was estimated from respective measurements of MT and PA within each muscle and region. Participants then began a high intensity, low volume (4 × 3 − 5 repetitions, 3min rest) lower-body resistance training program, and repeated all PRE-assessments after 8 weeks (2 d · wk−1) of training (POST). Although three-way (muscle [RF, VL] × region [30, 50, 70%] × time [PRE, POST]) repeated measures analysis of variance did not reveal significant interactions for any assessment of morphology, significant simple (muscle × time) effects were observed for CSA (p = 0.002) and FL (p = 0.016). Specifically, average CSA changes favored the VL (2.96 ± 0.69 cm2, pp < 0.001) over the RF (0.59 ± 0.20 cm2, p = 0.011), while significant decreases in average FL were noted for the RF (–1.03 ± 0.30 cm, p = 0.004) but not the VL (–0.05 ± 0.36 cm, p = 0.901). No other significant differences were observed. The findings of this study demonstrate the occurrence of non-homogenous adaptations in RF and VL muscle size and architecture following 8 weeks of high-intensity resistance training in resistance-trained men. However, training does not appear to influence region-specific adaptations in either muscle.


2021 ◽  
Vol 3 ◽  
Author(s):  
Stephan van der Zwaard ◽  
Tommie F. P. Koppens ◽  
Guido Weide ◽  
Koen Levels ◽  
Mathijs J. Hofmijster ◽  
...  

Training-induced adaptations in muscle morphology, including their magnitude and individual variation, remain relatively unknown in elite athletes. We reported changes in rowing performance and muscle morphology during the general and competitive preparation phases in elite rowers. Nineteen female rowers completed 8 weeks of general preparation, including concurrent endurance and high-load resistance training (HLRT). Seven rowers were monitored during a subsequent 16 weeks of competitive preparation, including concurrent endurance and resistance training with additional plyometric loading (APL). Vastus lateralis muscle volume, physiological cross-sectional area (PCSA), fascicle length, and pennation angle were measured using 3D ultrasonography. Rowing ergometer power output was measured as mean power in the final 4 minutes of an incremental test. Rowing ergometer power output improved during general preparation [+2 ± 2%, effect size (ES) = 0.22, P = 0.004], while fascicle length decreased (−5 ± 8%, ES = −0.47, P = 0.020). Rowing power output further improved during competitive preparation (+5 ± 3%, ES = 0.52, P = 0.010). Here, morphological adaptations were not significant, but demonstrated large ESs for fascicle length (+13 ± 19%, ES = 0.93), medium for pennation angle (−9 ± 15%, ES = −0.71), and small for muscle volume (+8 ± 13%, ES = 0.32). Importantly, rowers showed large individual differences in their training-induced muscle adaptations. In conclusion, vastus lateralis muscles of elite female athletes are highly adaptive to specific training stimuli, and adaptations largely differ between individual athletes. Therefore, coaches are encouraged to closely monitor their athletes' individual (muscle) adaptations to better evaluate the effectiveness of their training programs and finetune them to the athlete's individual needs.


2007 ◽  
Vol 103 (5) ◽  
pp. 1565-1575 ◽  
Author(s):  
Anthony J. Blazevich ◽  
Dale Cannavan ◽  
David R. Coleman ◽  
Sara Horne

Studies using animal models have been unable to determine the mechanical stimuli that most influence muscle architectural adaptation. We examined the influence of contraction mode on muscle architectural change in humans, while also describing the time course of its adaptation through training and detraining. Twenty-one men and women performed slow-speed (30°/s) concentric-only (Con) or eccentric-only (Ecc) isokinetic knee extensor training for 10 wk before completing a 3-mo detraining period. Fascicle length of the vastus lateralis (VL), measured by ultrasonography, increased similarly in both groups after 5 wk (ΔCon = +6.3 ± 3.0%, ΔEcc = +3.1 ± 1.6%, mean = +4.7 ± 1.7%; P < 0.05). No further increase was found at 10 wk, although a small increase (mean ∼2.5%; not significant) was evident after detraining. Fascicle angle increased in both groups at 5 wk (ΔCon = +11.1 ± 4.0%, ΔEcc = +11.9 ± 5.4%, mean = 11.5 ± 3.2%; P < 0.05) and 10 wk (ΔCon = +13.3 ± 3.0%, ΔEcc = +21.4 ± 6.9%, mean = 17.9 ± 3.7%; P < 0.01) in VL only and remained above baseline after detraining (mean = 13.2%); smaller changes in vastus medialis did not reach significance. The similar increase in fascicle length observed between the training groups mitigates against contraction mode being the predominant stimulus. Our data are also strongly indicative of 1) a close association between VL fascicle length and shifts in the torque-angle relationship through training and detraining and 2) changes in fascicle angle being driven by space constraints in the hypertrophying muscle. Thus muscle architectural adaptations occur rapidly in response to resistance training but are strongly influenced by factors other than contraction mode.


2020 ◽  
Vol 129 (1) ◽  
pp. 173-184 ◽  
Author(s):  
Ryota Akagi ◽  
Avery Hinks ◽  
Geoffrey A. Power

Eight weeks of isometric training at a long or short muscle-tendon unit length increased and did not change fascicle length, respectively. The “width” of the torque-angle relationship plateau became broader following isometric training at the long length. Despite marked differences in muscle architecture and functional adaptations between the groups, there was only a small-magnitude improvement in neuromuscular fatigue resistance, which was surprisingly negatively related to increased fascicle length in the long length-training group.


2013 ◽  
Vol 25 (3) ◽  
pp. 370-384 ◽  
Author(s):  
Michael Behringer ◽  
Sebastian Neuerburg ◽  
Maria Matthews ◽  
Joachim Mester

The purpose of the current study was to evaluate the transferability of 2 different resistance training protocols on service velocity and its precision consistency in junior tennis players. Thirty-six male athletes (15.03 ± 1.64 years) were randomly assigned to a machine-based resistance-training group (RG, n = 12), a plyometric training group (PG, n = 12), and a control group (CG, n = 12). For a period of 8 weeks, both intervention groups resistance trained 2 days per week in addition to their regular tennis training, whereas the CG had no extra training. Mean service velocity over 20 maximum-velocity serves increased significantly more in PG (3.78%; p < .05) when compared with CG, whereas no such changes could be found in the RG (1.18%; p > .05). Service precision did not change from pre- to posttest in all three groups (p > .05). Only the plyometric training program tested, improved mean service velocity over 20 maximum-velocity serves in junior tennis players but did not affect service precision.


Author(s):  
Shahnaz Hasan ◽  
Gokulakannan Kandasamy ◽  
Danah Alyahya ◽  
Asma Alonazi ◽  
Azfar Jamal ◽  
...  

The main objectives of this study were to evaluate the short-term effects of resisted sprint and plyometric training on sprint performance together with lower limb physiological and functional performance in collegiate football players. Ninety collegiate football players participated in this three-arm, parallel group randomized controlled trial study. Participants were randomly divided into a control group and two experimental groups: resisted sprint training (RST) (n = 30), plyometric training (PT) (n = 30), and a control group (n = 30). Participants received their respective training program for six weeks on alternate days. The primary outcome measures were a knee extensor strength test (measured by an ISOMOVE dynamometer), a sprint test and a single leg triple hop test. Measurements were taken at baseline and after 6 weeks post-training. Participants, caregivers, and those assigning the outcomes were blinded to the group assignment. A mixed design analysis of variance was used to compare between groups, within-group and the interaction between time and group. A within-group analysis revealed a significant difference (p < 0.05) when compared to the baseline with the 6 weeks post-intervention scores for all the outcomes including STN (RST: d = 1.63; PT: d = 2.38; Control: d = 2.26), ST (RST: d = 1.21; PT: d = 1.36; Control: d = 0.38), and SLTHT (RST: d = 0.76; PT: d = 0.61; Control: d = 0.18). A sub-group analysis demonstrated an increase in strength in the plyometric training group (95% CI 14.73 to 15.09, p = 0.00), an increase in the single leg triple hop test in the resisted sprint training group (95% CI 516.41 to 538.4, p = 0.05), and the sprint test was also improved in both experimental groups (95% CI 8.54 to 8.82, p = 0.00). Our findings suggest that, during a short-term training period, RST or PT training are equally capable of enhancing the neuromechanical capacities of collegiate football players. No adverse events were reported by the participants.


Sign in / Sign up

Export Citation Format

Share Document