Influence of concentric and eccentric resistance training on architectural adaptation in human quadriceps muscles

2007 ◽  
Vol 103 (5) ◽  
pp. 1565-1575 ◽  
Author(s):  
Anthony J. Blazevich ◽  
Dale Cannavan ◽  
David R. Coleman ◽  
Sara Horne

Studies using animal models have been unable to determine the mechanical stimuli that most influence muscle architectural adaptation. We examined the influence of contraction mode on muscle architectural change in humans, while also describing the time course of its adaptation through training and detraining. Twenty-one men and women performed slow-speed (30°/s) concentric-only (Con) or eccentric-only (Ecc) isokinetic knee extensor training for 10 wk before completing a 3-mo detraining period. Fascicle length of the vastus lateralis (VL), measured by ultrasonography, increased similarly in both groups after 5 wk (ΔCon = +6.3 ± 3.0%, ΔEcc = +3.1 ± 1.6%, mean = +4.7 ± 1.7%; P < 0.05). No further increase was found at 10 wk, although a small increase (mean ∼2.5%; not significant) was evident after detraining. Fascicle angle increased in both groups at 5 wk (ΔCon = +11.1 ± 4.0%, ΔEcc = +11.9 ± 5.4%, mean = 11.5 ± 3.2%; P < 0.05) and 10 wk (ΔCon = +13.3 ± 3.0%, ΔEcc = +21.4 ± 6.9%, mean = 17.9 ± 3.7%; P < 0.01) in VL only and remained above baseline after detraining (mean = 13.2%); smaller changes in vastus medialis did not reach significance. The similar increase in fascicle length observed between the training groups mitigates against contraction mode being the predominant stimulus. Our data are also strongly indicative of 1) a close association between VL fascicle length and shifts in the torque-angle relationship through training and detraining and 2) changes in fascicle angle being driven by space constraints in the hypertrophying muscle. Thus muscle architectural adaptations occur rapidly in response to resistance training but are strongly influenced by factors other than contraction mode.

2020 ◽  
Vol 120 (11) ◽  
pp. 2371-2382 ◽  
Author(s):  
Simon Walker ◽  
Joanne Trezise ◽  
Guy Gregory Haff ◽  
Robert U. Newton ◽  
Keijo Häkkinen ◽  
...  

Abstract Purpose This study examined whether additional external load during the eccentric phase of lower limb strength training exercises led to greater adaptations in knee extensor strength, muscle architecture, and patellar tendon properties than traditional concentric–eccentric training in already-trained men. Methods Twenty-eight men accustomed to strength training were randomized to undertake 10 weeks of supervised traditional (TRAD) or accentuated eccentric loading (AEL) or continue their habitual unsupervised (CON) strength training. TRAD and AEL trained 2∙week−1 with a six-repetition maximum (RM) session and a ten-RM session. TRAD used the same external load in both concentric and eccentric phases, while AEL used 40% greater load during the eccentric than concentric phase. Tests were performed at pre- and post-training, including: maximum unilateral isokinetic (30°·s−1) concentric, eccentric and isometric torques by isokinetic dynamometry, unilateral isometric ramp contractions with muscle–tendon ultrasound imaging to measure tendon stiffness and hysteresis, and resting vastus lateralis and medialis fascicle angle and length measured by extended-field-of-view ultrasound. Results After training, both TRAD and AEL significantly increased maximum concentric and isometric torque (p < 0.05), but only AEL increased eccentric torque (AEL: + 10 ± 9%, TRAD: + 4 ± 9%) and vastus lateralis (AEL: + 14 ± 14%, TRAD: + 1 ± 10%) and medialis (AEL: + 19 ± 8%, TRAD: + 5 ± 11%) fascicle length. Conclusion Both TRAD and AEL increased maximum knee extensor strength but only AEL increased VL and VM fascicle length. Neither training program promoted changes in fascicle angle or changes in patellar tendon properties in our already-trained men.


2017 ◽  
Vol 12 (6) ◽  
pp. 762-773 ◽  
Author(s):  
Josh L Secomb ◽  
Oliver R Farley ◽  
Sophia Nimphius ◽  
Lina Lundgren ◽  
Tai T Tran ◽  
...  

Although previous research has investigated the training-specific adaptations to training in adults, there is a paucity of research aimed at investigating these adaptations in adolescent athletes. As such, adolescent athletes’ training-specific adaptations from three different training interventions were investigated in this study. Sixteen adolescent athletes participated in this study, whereby eight performed both training interventions and eight the non-training control. Pre- and post-testing was performed for each intervention with the testing battery: ultrasonography of the vastus lateralis and lateral gastrocnemius, countermovement jump, squat jump, and isometric mid-thigh pull. The resistance training group had large significant increases in isometric mid-thigh pull relative peak force ( p < 0.01, g = 0.85 (−0.01, 1.71)) and vastus lateralis fascicle length ( p = 0.04, g = 0.94 (0.07, 1.80)). The gymnastics and plyometric group demonstrated large significant changes in vastus lateralis pennation angle ( p = 0.03, g = −0.94 (−1.81, −0.08)) and fascicle length ( p = 0.03, g = 1.07 (0.19, 1.95)), and moderate significant increases in lateral gastrocnemius thickness ( p = 0.01, g = 0.63 (−0.21, 1.47)) and eccentric leg stiffness ( p = 0.03, g = 0.60 (−0.24, 1.44)). No significant changes were observed for any variables in the non-training group. The resistance training evoked increases in lower-body force producing capabilities, whereas the gymnastics and plyometric training evoked changes in muscle structure and inherent muscle qualities.


Sports ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 41 ◽  
Author(s):  
Angeliki-Nikoletta Stasinaki ◽  
Nikolaos Zaras ◽  
Spyridon Methenitis ◽  
Gregory Bogdanis ◽  
Gerasimos Terzis

The aim of the study was to investigate the rate of force development (RFD) and muscle architecture early adaptations in response to training with fast- or slow-velocity eccentric squats. Eighteen young novice participants followed six weeks (two sessions/week) of either fast-velocity (Fast) or slow-velocity (Slow) squat eccentric-only training. Fast eccentric training consisted of nine sets of nine eccentric-only repetitions at 70% of 1-RM with <1 s duration for each repetition. Slow eccentric training consisted of five sets of six eccentric-only repetitions at 90% of 1-RM with ~4 sec duration for each repetition. Before and after training, squat 1-RM, countermovement jump (CMJ), isometric leg press RFD, and vastus lateralis muscle architecture were evaluated. Squat 1-RM increased by 14.5 ± 7.0% (Fast, p < 0.01) and by 5.4 ± 5.1% (Slow, p < 0.05). RFD and fascicle length increased significantly in the Fast group by 10–19% and 10.0 ± 6.2%, p < 0.01, respectively. Muscle thickness increased only in the Slow group (6.0 ± 6.8%, p < 0.05). Significant correlations were found between the training induced changes in fascicle length and RFD. These results suggest that fast eccentric resistance training may be more appropriate for increases in rapid force production compared to slow eccentric resistance training, and this may be partly due to increases in muscle fascicle length induced by fast eccentric training.


2010 ◽  
Vol 90 (11) ◽  
pp. 1619-1630 ◽  
Author(s):  
Noelle G. Moreau ◽  
Kit N. Simpson ◽  
Sharlene A. Teefey ◽  
Diane L. Damiano

Background Muscle architecture is known to be predictive of muscle function. However, it is unknown whether this relationship is similar in children and adolescents with and without cerebral palsy (CP). Objective The objective of this study was to determine whether the architecture of the rectus femoris (RF) and vastus lateralis (VL) muscles was predictive of maximum voluntary knee extensor torque in children and adolescents with and without CP and whether these measures were related to activity and participation levels. Design A case-control design was used. Methods Eighteen participants with CP (mean age=12.0 years, SD=3.2) at Gross Motor Function Classification System (GMFCS) levels I through IV and 12 age-matched peers with typical development (mean age=12.3 years, SD=3.9) were evaluated. Muscle thickness, fascicle length, and fascicle angle of the RF and VL muscles were measured with 2-dimensional, B-mode ultrasound imaging. The activity and participation measures used for participants with CP were the Pediatric Outcomes Data Collection Instrument (PODCI) and the Activities Scale for Kids, Performance Version (ASKp). Results When age and GMFCS level were controlled for, VL muscle thickness was the best predictor of knee extensor isometric torque in the group with CP (R2=.85). This prediction was similar to the prediction from VL muscle thickness and age in participants with typical development (R2=.91). Rectus femoris muscle fascicle length was significantly correlated with the Sports and Physical Functioning Scale of the PODCI (ρ=.49), and VL muscle fascicle angle was correlated with the Transfers and Basic Mobility Scale of the PODCI (r=.47) and with ASKp Locomotion subdomain (r=.50). Limitations A limitation of this study was the small sample size. Conclusions Ultrasound measures of VL muscle thickness, adjusted for age and GMFCS level, were highly predictive of maximum torque and have the potential to serve as surrogate measures of voluntary strength (force-generating capacity) in children and adolescents with and without CP.


2016 ◽  
Vol 48 ◽  
pp. 184 ◽  
Author(s):  
Ryosuke Ando ◽  
Kazunori Nosaka ◽  
Aya Tomita ◽  
Kohei Watanabe ◽  
Anthony J. Blazevich ◽  
...  

2021 ◽  
pp. 1-7
Author(s):  
Rodrigo Ramalho Aniceto ◽  
André Luiz Torres Pirauá ◽  
Leonardo da Silva Leandro ◽  
Hélen Cristina Ferreira da Silva ◽  
Diego Mesquita Silva ◽  
...  

BACKGROUND: Squats are considered one of the main exercises for the lower limbs and are used in resistance training under different contexts, including rehabilitation and sports performance. OBJECTIVE: To compare the EMG activity of different muscles in back squat and lunge exercises in trained women. METHODS: Ten healthy women experienced in resistance training performed back squat and lunge exercises on a Smith machine (total work: 70% of 1RM, 1 set, 10 repetitions and 2-s/2-s of execution speed) with an interval of 20-min between exercises. Both exercises were standardized in relation to the trunk inclination and were performed with an erect trunk parallel to the cursor of the guided bar. RESULTS: The EMG activity of the vastus medialis (VM), vastus lateralis (VL), biceps femoris (BF), and gluteus maximus (GM) were analyzed. There were no significant differences in the EMG activity of the VM, VL, and BF muscles between the back squat and lunge exercises (P> 0.05); however, GM activation was greater during the lunge exercise (effect size = 1.15; P= 0.001). CONCLUSIONS: Lunges were more effective in recruiting the GM when compared to back squats. However, both exercises can be recommended when the goal is knee extensor and flexor muscle activity.


2018 ◽  
Author(s):  
Gerald T. Mangine ◽  
Michael J. Redd ◽  
Adam M. Gonzalez ◽  
Jeremy R. Townsend ◽  
Adam J Wells ◽  
...  

AbstractResistance training may differentially affect morphological adaptations along the length of uni-articular and bi-articular muscles. The purpose of this study was to compare changes in muscle morphology along the length of the rectus femoris (RF) and vastus lateralis (VL) in response to resistance training. Following a 2-wk preparatory phase, 15 resistance-trained men (24.0 ± 3.0 y, 90.0 ± 13.8 kg, 174.9 ± 20.7 cm) completed pre-training (PRE) assessments of muscle thickness (MT), pennation angle (PA), cross-sectional area (CSA), and echo-intensity in the RF and VL at 30, 50, and 70% of each muscle’s length; fascicle length (FL) was estimated from respective measurements of MT and PA within each muscle and region. Participants then began a high intensity, low volume (4 × 3 − 5 repetitions, 3min rest) lower-body resistance training program, and repeated all PRE-assessments after 8 weeks (2 d · wk−1) of training (POST). Although three-way (muscle [RF, VL] × region [30, 50, 70%] × time [PRE, POST]) repeated measures analysis of variance did not reveal significant interactions for any assessment of morphology, significant simple (muscle × time) effects were observed for CSA (p = 0.002) and FL (p = 0.016). Specifically, average CSA changes favored the VL (2.96 ± 0.69 cm2, pp < 0.001) over the RF (0.59 ± 0.20 cm2, p = 0.011), while significant decreases in average FL were noted for the RF (–1.03 ± 0.30 cm, p = 0.004) but not the VL (–0.05 ± 0.36 cm, p = 0.901). No other significant differences were observed. The findings of this study demonstrate the occurrence of non-homogenous adaptations in RF and VL muscle size and architecture following 8 weeks of high-intensity resistance training in resistance-trained men. However, training does not appear to influence region-specific adaptations in either muscle.


2021 ◽  
Vol 3 ◽  
Author(s):  
Stephan van der Zwaard ◽  
Tommie F. P. Koppens ◽  
Guido Weide ◽  
Koen Levels ◽  
Mathijs J. Hofmijster ◽  
...  

Training-induced adaptations in muscle morphology, including their magnitude and individual variation, remain relatively unknown in elite athletes. We reported changes in rowing performance and muscle morphology during the general and competitive preparation phases in elite rowers. Nineteen female rowers completed 8 weeks of general preparation, including concurrent endurance and high-load resistance training (HLRT). Seven rowers were monitored during a subsequent 16 weeks of competitive preparation, including concurrent endurance and resistance training with additional plyometric loading (APL). Vastus lateralis muscle volume, physiological cross-sectional area (PCSA), fascicle length, and pennation angle were measured using 3D ultrasonography. Rowing ergometer power output was measured as mean power in the final 4 minutes of an incremental test. Rowing ergometer power output improved during general preparation [+2 ± 2%, effect size (ES) = 0.22, P = 0.004], while fascicle length decreased (−5 ± 8%, ES = −0.47, P = 0.020). Rowing power output further improved during competitive preparation (+5 ± 3%, ES = 0.52, P = 0.010). Here, morphological adaptations were not significant, but demonstrated large ESs for fascicle length (+13 ± 19%, ES = 0.93), medium for pennation angle (−9 ± 15%, ES = −0.71), and small for muscle volume (+8 ± 13%, ES = 0.32). Importantly, rowers showed large individual differences in their training-induced muscle adaptations. In conclusion, vastus lateralis muscles of elite female athletes are highly adaptive to specific training stimuli, and adaptations largely differ between individual athletes. Therefore, coaches are encouraged to closely monitor their athletes' individual (muscle) adaptations to better evaluate the effectiveness of their training programs and finetune them to the athlete's individual needs.


2018 ◽  
Author(s):  
P. Mannarino ◽  
T. T. Matta ◽  
F. O. Oliveira

ABSTRACTHabitual loading and resistance training (RT) can determine changes in muscle and tendon morphology but also in its mechanical properties. Conventional ultrasound (US) evaluation of these mechanical properties present limitations that can now be overcome with the advent of Supersonic Shearwave Imaging (SSI). The objective of this study was to analyze the Vastus Lateralis (VL) and patellar tendon (PT) mechanical properties adaptations to an 8-week RT protocol using SSI. We submitted 15 untrained health young men to an 8-week RT directed knee extensor mechanism. VL and PT shear modulus (μ) was assessed pre and post intervention with SSI. VL muscle thickness (VL MT) and knee extension torque (KT) was also measure pre and post intervention to ensure the RT efficiency. Significant increases were observed in VL MT and KT (pre= 2.40 ± 0.40 cm and post= 2.63 ± 0.35 cm, p = 0.0111, and pre= 294.66 ± 73.98 Nm and post= 338.93 ± 76.39 Nm, p = 0.005, respectively). The 8-week RT was also effective in promoting VL μ adaptations (pre= 4.87 ± 1.38 kPa and post= 9.08.12 ± 1.86 kPa, p = 0.0105), but not in significantly affecting PT μ (pre= 78.85 ± 7.37 kPa and post= 66.41 ± 7.25 kPa, p = 0.1287). The present study showed that an 8-week resistance training protocol was effective in adapting VL μ but not PT μ. Further investigation should be conducted with special attention to longer interventions, to possible PT differential individual responsiviness and to the muscle-tendon resting state tension environment.


2006 ◽  
Vol 291 (5) ◽  
pp. E937-E946 ◽  
Author(s):  
John K. Petrella ◽  
Jeong-su Kim ◽  
James M. Cross ◽  
David J. Kosek ◽  
Marcas M. Bamman

Skeletal muscle stem (satellite) cells supporting growth/regeneration are thought to be activated and incorporated into growing myofibers by both endocrine and locally expressed autocrine/paracrine growth factors, the latter being load sensitive. We recently found that myofiber hypertrophy with resistance training is superior in young men (YM) vs. young women and older adults (Kosek DJ, Kim JS, Petrella JK, Cross JM, and Bamman MM. J Appl Physiol 101: 531–544, 2006). We hypothesized that the advanced myofiber hypertrophy in YM is facilitated by myonuclear addition in response to a milieu promoting stem cell activation. Twenty-six young (27.0 ± 1 yr, 50% women) and 26 older (63.7 ± 1 yr, 50% women) adults completed 16 wk of knee extensor resistance training. Vastus lateralis biopsies were obtained at baseline, 24 h after one bout, and after 16 wk. Muscle stem cells were identified immunohistochemically with anti-neural cell adhesion molecule (NCAM+). Muscle transcript levels of IGF-I and mechanogrowth factor (MGF) were determined by RT-PCR. Serum IGF-I, IGF-binding protein (IGFBP)-3, IGFBP-1, total and free testosterone, sex hormone-binding globulin (SHBG), and androstenedione were assessed by radioimmunoassay. Myofiber hypertrophy was twofold greater in YM vs. others, and only YM increased NCAM+ cells per 100 myofibers (49%) and myonuclei per fiber (19%) ( P < 0.05). IGF-IEa mRNA was higher in young and increased acutely (29%) with summation by 16 wk (96%) ( P < 0.05). MGF mRNA increased only in young after one bout (81%) and by 16 wk (85%) ( P < 0.001). Circulating IGF-I was twofold higher in young, whereas IGFBP-1 was lowest in YM ( P < 0.05). Among men, free testosterone was 59% higher in YM ( P < 0.01). Myonuclear addition was most effectively accomplished in YM, which likely drove the superior growth.


Sign in / Sign up

Export Citation Format

Share Document