An examination of the current National Operating Committee on Standards for Athletic Equipment system and a new pneumatic ram method for evaluating American football helmet performance to reduce risk of concussion

Author(s):  
Thomas Blaine Hoshizaki ◽  
Clara Karton ◽  
R. Anna Oeur ◽  
Marshall Kendall ◽  
Lauren Dawson ◽  
...  

Brain injuries are prevalent in the sport of American football. Helmets have been used which effectively have reduced the incidence of traumatic brain injury, but have had a limited effect on concussion rates. In an effort to improve the protective capacity of American football helmets, a standard has been proposed by National Operating Committee on Standards for Athletic Equipment that may better represent helmet-to-helmet impacts common to football concussions. The purpose of this research was to examine the National Operating Committee on Standards for Athletic Equipment standard and a new impact method similar to the proposed National Operating Committee on Standards for Athletic Equipment standard to examine the information these methods provide on helmet performance. Five National Operating Committee on Standards for Athletic Equipment–certified American football helmets were impacted according to the National Operating Committee on Standards for Athletic Equipment standard test and a new method based on the proposed standard test. The results demonstrated that the National Operating Committee on Standards for Athletic Equipment test produced larger linear accelerations than the new method, which were a reflection of the stiffer compliance of the standard meant to replicate traumatic brain injury mechanisms of injury. When the helmets were impacted using a new helmet-to-helmet method, the results reflected significant risk of concussive injury but showed differences in rotational acceleration responses between different helmet models. This suggests that the new system is sensitive enough to detect the effect of different design changes on rotational acceleration, a metric more closely associated with risk of concussion. As only one helmet produced magnitudes of response lower than the National Operating Committee on Standards for Athletic Equipment pass/fail using the new system, and all helmets passed the National Operating Committee on Standards for Athletic Equipment standard, these results suggest that further development of helmet technologies must be undertaken to reduce this risk in the future. Finally, these results show that it would be prudent to use both standards together to address risk of injury from traumatic brain injury and concussion.

Author(s):  
Hossein Vahid Alizadeh ◽  
Michael G. Fanton ◽  
August G. Domel ◽  
Gerald Grant ◽  
David Camarillo

Abstract Mild traumatic brain injury (mTBI), more colloquially known as concussion, is common in contact sports such as American football, leading to increased scrutiny of head protective gear. Standardized laboratory impact testing, such as the yearly NFL helmet test, is used to rank the protective performance of football helmets, motivating new technologies to improve the safety of helmets relative to existing equipment. In this work, we hypothesized that a helmet which transmits a nearly constant minimum force will result in a reduced risk of mTBI. To evaluate the plausibility of this hypothesis, we first show that the optimal force transmitted to the head, in a reduced order model of the brain, is in fact a constant force profile. To simulate the effects of a constant force within a helmet, we conceptualize a fluid-based shock absorber system for use within a football helmet. We integrate this system within a computational helmet model and simulate its performance on the standard NFL helmet test impact conditions. The simulated helmet is compared with other helmet designs with different technologies. Computer simulations of head impacts with liquid shock absorption predict that, at the highest impact speed (9.3 m/s), the average brain tissue strain is reduced by 27.6% ± 9.3 compared to existing helmet padding when tested on the NFL helmet protocol. This simulation-based study puts forth a target benchmark for the future design of physical manifestations of this technology.


2014 ◽  
Vol 8 (1) ◽  
pp. 14-19 ◽  
Author(s):  
Jéssica Natuline Ianof ◽  
Fabio Rios Freire ◽  
Vanessa Tomé Gonçalves Calado ◽  
Juliana Rhein Lacerda ◽  
Fernanda Coelho ◽  
...  

ABSTRACT Traumatic brain injury (TBI) is a major cause of lifelong disability and death worldwide. Sport-related traumatic brain injury is an important public health concern. The purpose of this review was to highlight the importance of sport-related concussions. Concussion refers to a transient alteration in consciousness induced by external biomechanical forces transmitted directly or indirectly to the brain. It is a common, although most likely underreported, condition. Contact sports such as American football, rugby, soccer, boxing, basketball and hockey are associated with a relatively high prevalence of concussion. Various factors may be associated with a greater risk of sport-related concussion, such as age, sex, sport played, level of sport played and equipment used. Physical complaints (headache, fatigue, dizziness), behavioral changes (depression, anxiety, irritability) and cognitive impairment are very common after a concussion. The risk of premature return to activities includes the prolongation of post-concussive symptoms and increased risk of concussion recurrence.


Author(s):  
D. Kacy Cullen ◽  
James P. Harris ◽  
Kevin D. Browne ◽  
John A. Wolf ◽  
John E. Duda ◽  
...  

2016 ◽  
Vol 7 ◽  
Author(s):  
Brian D. Stemper ◽  
Alok S. Shah ◽  
Matthew D. Budde ◽  
Christopher M. Olsen ◽  
Aleksandra Glavaski-Joksimovic ◽  
...  

Author(s):  
S Walling ◽  
N Kureshi ◽  
DB Clarke ◽  
M Erdogan ◽  
RS Green

Background: Intoxicated patients injured in off road vehicle (ORV) crashes have higher rates of traumatic brain injury (TBI) and intensive care unit (ICU) admission, as well as prolonged ICU length of stay. This study evaluated the impact of alcohol intoxication on mortality among major TBI patients injured in off-road vehicle crashes. Methods: A retrospective analysis (2002-2014) of off-road vehicle injuries in Nova Scotia resulting in major TBI was performed. ORVs included ATVs, snowmobiles, and dirt bikes. A logistic regression model was constructed to test for in-hospital mortality and adjusted for age, Abbreviated Injury Scale (AIS) Head, Injury Severity Score, and blood alcohol concentration (BAC). Results: There were 176 drivers and passengers of off-road vehicles. Overall mortality was 28%. BAC testing was performed in 61% patients; 85% of pre-hospital deaths were BAC positive (mean BAC=31 ± 17.39 mmol/L) and 70% in-hospital deaths were BAC positive (mean BAC=26 ± 23.12 mmol/L). After adjusting for confounders, high injury severity and intoxication increased the likelihood of in-hospital mortality. Conclusions: These findings demonstrate that alcohol intoxication is a significant risk factor for mortality among off-road vehicle collisions; for every mmol/L change in BAC, there was a 10% increase in the chance of in-hospital mortality.


Concussion ◽  
2019 ◽  
pp. 173-176
Author(s):  
Brian Hainline ◽  
Lindsey J. Gurin ◽  
Daniel M. Torres

Helmets are designed to prevent catastrophic brain injury such as skull fractures and intracranial hemorrhage. Helmets do not prevent concussion, and are sometimes used as a weapon that may actually lead to a concussive injury. Football helmets are certified by the National Operating Committee on Standards for Athletic Equipment (NOCSAE), and the National Football League has also developed criteria for evaluating football helmets independent of NOCSAE. To mitigate concussion and repetitive head impact exposure, the head needs to be taken out of the game, irrespective of the use of helmets.


2017 ◽  
Vol 11 (1) ◽  
pp. dmm030387 ◽  
Author(s):  
Guoxiang Wang ◽  
Yi Ping Zhang ◽  
Zhongwen Gao ◽  
Lisa B. E. Shields ◽  
Fang Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document