Jet-Induced Blood Release From Human Fingertips: A Single-Blind, Randomized, Crossover Trial

2021 ◽  
pp. 193229682110538
Author(s):  
Jiali Xu ◽  
James W. McKeage ◽  
Bryan P. Ruddy ◽  
Poul M. F. Nielsen ◽  
Andrew J. Taberner

Background: Lancet pricks are often poorly received by individuals with diabetes; jet injection may allow lancet-free blood sampling. We examine whether the technique of jet injection can release sufficient blood from the fingertip to enable measurement of blood glucose concentration. In addition, we assess the effect of jet shape and cross-sectional area on fluid release, blood dilution, and perceived pain. Methods: A randomized, single-blind, crossover study was conducted on 20 healthy volunteers who received interventions on four fingertips: a lancet prick, and jet injection of a small quantity of saline solution through three differently shaped and sized nozzles. Released fluid volume, blood concentration, and glucose concentration were assessed immediately after the intervention. Pain perception and duration, and any skin reactions, were evaluated both immediately and 24 hours after the intervention. Results: Jet injection released sufficient blood from the fingertip to conduct a glucose measurement. A slot-shaped nozzle released the most blood, although less than a lancet, with slightly higher pain. The blood glucose levels estimated from the extracted fluid showed a mean absolute percentage error of 25%. There was no consistent evidence that a jet injection leads to different skin reactions at the intervention site relative to a lancet prick. Conclusions: Fingertip penetration by jet injection can release a volume of fluid sufficient for blood glucose measurement. Jet injection with a slot-shaped nozzle and/or a nozzle with larger outlet area helps to release more fluid. This technique may enable blood sampling, glucose concentration measurement, and insulin delivery to be performed in a single device.

1991 ◽  
Vol 81 (2) ◽  
pp. 189-194 ◽  
Author(s):  
Stephanie A. Amiel ◽  
Helen R. Archibald ◽  
Gary Chusney ◽  
Alistair J. K. Williams ◽  
Edwin A. M. Gale

1. The effect of hyperketonaemia on counter-regulatory hormone responses to hypoglycaemia has been examined in six healthy subjects. 2. A controlled, step-wise reduction in blood glucose concentration was achieved by adjusting the rate of glucose infusion during a primed-continuous infusion of soluble insulin (1.5 m-units min−1 kg−1 body weight, plasma insulin concentration approximately 90 m-units/l). Simultaneous infusion of either saline or β-hydroxybutyrate (3 mg min−1 kg−1 body weight) was administered in a single-blind fashion, in random order. Despite a need for 40% more glucose during the ketone infusion, an identical fall in blood glucose concentration was achieved in each study. 3. The glycaemic threshold for stimulating an adrenaline response of 0.41 nmol/l was reduced from 3.1 to 2.8 mmol/l (P < 0.05) during ketone infusion, and that for stimulating a response of more than 50% of basal from 3.6 to 3.1 mmol/l (P < 0.001). The peak adrenaline response fell from 7.97 to 2.6 nmol/l (P < 0.04). Peak noradrenaline, cortisol and growth hormone responses were also significantly lower during ketone infusion (P = 0.04, 0.001 and 0.006, respectively). Glucagon responses alone were unaffected by hyperketonaemia. 4. The provision of an alternate metabolic fuel thus produced immediate changes in the neurohumoral responses to hypoglycaemia. This is consistent with the hypothesis that human nervous tissue can metabolize ketones acutely.


2017 ◽  
Vol 11 (3) ◽  
Author(s):  
Jyoti Yadav ◽  
Asha Rani ◽  
Vijander Singh ◽  
Bhaskar Mohan Murari

Noninvasive blood glucose (NIBG) measurement technique has been explored for the last three decades to facilitate diabetes management. Photoplethysmogram (PPG) signal may be used to measure the variations in blood glucose concentration. However, the literature reveals that physiological perturbations such as temperature, skin moisture, and sweat lead to less accurate NIBG measurements. The task of minimizing the effect of these perturbations for accurate measurements is an important research area. Therefore, in the present work, galvanic skin response (GSR) and temperature measurements along with PPG were used to measure blood glucose noninvasively. The data extracted from the sensors were used to estimate blood glucose concentration with the help of two machine learning (ML) techniques, i.e., multiple linear regression (MLR) and artificial neural network (ANN). The accuracy of proposed multisensor system was evaluated by pairing and comparing noninvasive measurements with invasively measured readings. The study was performed on 50 nondiabetic subjects with body mass index (BMI) 27.3 ± 3 kg/m2. The results revealed that multisensor NIBG measurement system significantly improves mean absolute prediction error and correlation coefficient in comparison to the techniques reported in the literature.


Mathematics ◽  
2021 ◽  
Vol 9 (20) ◽  
pp. 2529
Author(s):  
Gustavo A. Alonso-Silverio ◽  
Víctor Francisco-García ◽  
Iris P. Guzmán-Guzmán ◽  
Elías Ventura-Molina ◽  
Antonio Alarcón-Paredes

The present study comprises a comparison of the Mel Frequency Cepstral Coefficients (MFCC), Principal Component Analysis (PCA) and Independent Component Analysis (ICA) as feature extraction methods using ten different regression algorithms (AdaBoost, Bayesian Ridge, Decision Tree, Elastic Net, k-NN, Linear Regression, MLP, Random Forest, Ridge Regression and Support Vector Regression) to quantify the blood glucose concentration. A total of 122 participants—healthy and diagnosed with type 2 diabetes—were invited to be part of this study. The entire set of participants was divided into two partitions: a training subset of 72 participants, which was intended for model selection, and a validation subset comprising the remaining 50 participants, to test the selected model. A 3D-printed chamber for providing a light-controlled environment and a low-cost microcontroller unit were used to acquire optical measurements. The MFCC, PCA and ICA were calculated by an open-hardware computing platform. The glucose levels estimated by the system were compared to actual glucose concentrations measured by venipuncture in a laboratory test, using the mean absolute error, the mean absolute percentage error and the Clarke error grid for this purpose. The best results were obtained for MCCF with AdaBoost and Random Forest (MAE = 11.6 for both).


2014 ◽  
Vol 307 (4) ◽  
pp. H587-H597 ◽  
Author(s):  
Mark W. Sims ◽  
James Winter ◽  
Sean Brennan ◽  
Robert I. Norman ◽  
G. André Ng ◽  
...  

While it is well established that mortality risk after myocardial infarction (MI) increases in proportion to blood glucose concentration at the time of admission, it is unclear whether there is a direct, causal relationship. We investigated potential mechanisms by which increased blood glucose may exert cardiotoxicity. Using a Wistar rat or guinea-pig isolated cardiomyocyte model, we investigated the effects on cardiomyocyte function and electrical stability of alterations in extracellular glucose concentration. Contractile function studies using electric field stimulation (EFS), patch-clamp recording, and Ca2+ imaging were used to determine the effects of increased extracellular glucose concentration on cardiomyocyte function. Increasing glucose from 5 to 20 mM caused prolongation of the action potential and increased both basal Ca2+ and variability of the Ca2+ transient amplitude. Elevated extracellular glucose concentration also attenuated the protection afforded by ischemic preconditioning (IPC), as assessed using a simulated ischemia and reperfusion model. Inhibition of PKCα and β, using Gö6976 or specific inhibitor peptides, attenuated the detrimental effects of glucose and restored the cardioprotected phenotype to IPC cells. Increased glucose concentration did not attenuate the cardioprotective role of PKCε, but rather activation of PKCα and β masked its beneficial effect. Elevated extracellular glucose concentration exerts acute cardiotoxicity mediated via PKCα and β. Inhibition of these PKC isoenzymes abolishes the cardiotoxic effects and restores IPC-mediated cardioprotection. These data support a direct link between hyperglycemia and adverse outcome after MI. Cardiac-specific PKCα and β inhibition may be of clinical benefit in this setting.


2014 ◽  
Vol 19 (3) ◽  
pp. 527-533 ◽  
Author(s):  
Miho Senda ◽  
Susumu Ogawa ◽  
Kazuhiro Nako ◽  
Masashi Okamura ◽  
Takuya Sakamoto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document