scholarly journals Pharmacokinetics of Stereoisomeric Dipeptide Prodrugs of Acyclovir following Intravenous and Oral Administrations in Rats: A study Involving in vivo corneal Uptake of Acyclovir following Oral Dosing

2009 ◽  
Vol 1 ◽  
pp. OED.S2857 ◽  
Author(s):  
Ravi S. Talluri ◽  
Ripal Gaudana ◽  
Sudharshan Hariharan ◽  
Ashim K. Mitra

Objective To delineate the plasma pharmacokinetics and determine the corneal uptake of valine based stereoisomeric dipeptide prodrugs of acyclovir (ACV) in rats. Methods Male Sprague-Dawley rats were used for the study. Pharmacokinetics of ACV, L-valine-acyclovir (LACV), L-valine-D-valine-acyclovir (LDACV) and D-valine-L-valine acyclovir (DLACV) prodrugs were delineated. These compounds were administered intravenously as a bolus via jugular vein cannula and orally by gavage. Samples were purified by protein precipitation method and analyzed by LC-MS/MS. Pertinent pharmacokinetic parameters were obtained by using WinNonlin. Corneal uptake studies of LDACV and LACV were studied following oral administration. Results Following i.v. administration, the area under the curve (AUC) in μM*min of generated ACV was in the order of LACV > LDACV > DLACV indicating their rate of metabolism. The AUC values of total drug obtained in the systemic circulation after oral administration LACV and LDACV were 1077.93 ± 236.09 and 1141.76 ± 73.67 μM*min, respectively. DLACV exhibited poor oral absorption. Cmax (μM) and AUC of the intact prodrug obtained in the systemic circulation following oral administration of LDACV were almost 4–5 times higher than LACV. Moreover, concentrations achieved in the cornea after oral administration of LDACV were almost two times of LACV. Conclusions LDACV increased both the oral bioavailability and subsequent in vivo corneal uptake of ACV Hence, LDACV can be considered as the most promising drug candidate for delivery of ACV, in treatment of both genital herpes and ocular herpes keratitis after oral administration.

2015 ◽  
Vol 10 (9) ◽  
pp. 1934578X1501000 ◽  
Author(s):  
Rosario Russo ◽  
Angelo Mancinelli ◽  
Michele Ciccone ◽  
Fabio Terruzzi ◽  
Claudio Pisano ◽  
...  

Diosmin is a naturally occurring flavonoid present in citrus fruits and other plants belonging to the Rutaceae family. It is used for the treatment of chronic venous insufficiency (CVI) for its pheblotonic and vaso-active properties, safety and tolerability as well. The aim of the current in vivo study was to investigate the pharmacokinetic profile of a branded micronized diosmin (μSMIN Plus™) compared with plain micronized diosmin in male Sprague-Dawley rats. After oral administration by gastric gavage, blood samples were collected via jugular vein catheters at regular time intervals from baseline up to 24 hours. Plasma concentrations were assessed by LC/MS. For each animal, the following pharmacokinetic parameters were calculated using a non-compartmental analysis: maximum plasma drug concentration (Cmax), time to reach Cmax (Tmax), area under the plasma concentration-time curve (AUC0-last), elimination half-life (t1/2), and relative oral bioavailability (%F). The results of the current study clearly showed an improvement in the pharmacokinetic parameters in animals treated with μSMIN Plus™ compared with animals treated with micronized diosmin. In particular, μSMIN Plus™ showed a 4-fold increased bioavailability compared with micronized diosmin. In conclusion, the results from the current study provided a preliminary pharmacokinetic profile for μSMIN Plus™, which may represent a new tool for CVI management.


2020 ◽  
Vol 16 ◽  
Author(s):  
Yihe Huang ◽  
Yanhui Zhao ◽  
Yumeng Zhang ◽  
Lin Sun ◽  
Chunjie Zhao ◽  
...  

Background: Danyikangtai powder, a traditional Chinese medicine (TCM) formula, shows promise to become a novel drug candidate for the simultaneous treatment of chronic cholecystitis and chronic pancreatitis. However, the pharmacokinetic behavior of Danyikangtai powder remains unclear. Objective: We investigated the comparative pharmacokinetics of four flavonoids in rats after oral administration of Danyikangtai powder and three compatibilites. Materials and methods: The comparative pharmacokinetics was studied by ultra performance liquid chromatography tandem mass spectrometry (UPLC–MS/MS). Chromatographic separation was performed on an Universil XB-C18 column with a gradient mobile phase containing 0.1% (v/v) aqueous formic acid and acetonitrile. All analytes and internal standard were quantitated in the multiple reaction monitoring mode with a positive electrospray ionization interface. Results and discussion: Danyikangtai powder and Scutellariae radix have similar pharmacokinetic behaviors in rats after oral administration. However, the elimination of four flavonoids in rats after oral administration of Danyikangtai powder was accelerated, which was possibly related to the reduction of the potential hepatotoxicity of Scutellariae radix. The varying degrees of change in pharmacokinetic parameters after oral administration of different herb combinations suggested that herb–herb interactions occurred in vivo. Conclusions: This study will be helpful to reveal the safety, rational and mechanism of Danyikangtai powder formula compatibility, thereby providing pre-clinical research data for its new drug development and guidance for its rational clinical application.


2009 ◽  
Vol 37 (04) ◽  
pp. 657-667 ◽  
Author(s):  
Ruhong Zhang ◽  
Jinjie Jie ◽  
Yan'an Zhou ◽  
Zhijian Cao ◽  
Wenxin Li

This study was designed to explore the pharmacokinetic interaction of Panax Ginseng with fexofenadine in rats. Sprague-Dawley (SD) male rats were divided randomly into four groups: control oral and treatment oral dose groups ( n = 6, respectively); control intravenous and treatment intravenous dose groups ( n = 5, respectively). A single dose of fexofenadine (10 mg/kg for intravenous group rats and 100 mg/kg for oral dose group rats) was administered after 14 consecutive days of gastric gavage feeding of panax ginseng suspension (150 mg/kg/day) to treatment groups while the same volume of vehicle (1.6% ethanol) was administered as placebo to control groups. Blood samples were collected from 0 to 12 hours and levels of fexofenadine were measured by LC-MS/MS. Tissues were harvested to determine tissue/blood ratios. The pharmacokinetic parameters of fexofenadine were calculated using non-compartmental analysis. In the oral dose groups, (extravenous) panax ginseng decreased the area under the curve between 0–12 hours (AUC0–12) from 102490.7 ± 25273.5 to 49933.3 ± 12072.9 min*ng/ml ( p < 0.005), decreased C max from 1102.0 ± 116.6 to 274.3 ± 180.6 ng/ml ( p < 0.001), and significantly decreased ratios of brain to plasma concentration (B/P) ( p < 0.05). In the intravenous groups, panax ginseng only reduced B/P ratios ( p < 0.05). The mean bioavailability ( F ev ) of fexofenadine was decreased by 16.1% in the extravenous dose treatment group ( p < 0.05). Long term administration of panax ginseng to rats might induce both intestinal and brain endothelium p-glycoprotein (p-gp) expression. In addition, long term use of panax ginseng reduced the bioavailability of concurrently administered fexofenadine.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 574
Author(s):  
Xiuqing Gao ◽  
Lei Wu ◽  
Robert Y. L. Tsai ◽  
Jing Ma ◽  
Xiaohua Liu ◽  
...  

Mycophenolic acid (MPA) is commonly used for organ rejection prophylaxis via oral administration in the clinic. Recent studies have shown that MPA also has anticancer activities. To explore new therapeutic options for oral precancerous/cancerous lesions, MPA was designed to release topically on the dorsal tongue surface via a mucoadhesive patch. The objective of this study was to establish the pharmacokinetic (PK) and tongue tissue distribution of mucoadhesive MPA patch formulation after supralingual administration in rats and also compare the PK differences between oral, intravenous, and supralingual administration of MPA. Blood samples were collected from Sprague Dawley rats before and after a single intravenous bolus injection, a single oral dose, or a mucoadhesive patch administration on the dorsal tongue surface for 4 h, all with a dose of 0.5 mg/kg of MPA. Plots of MPA plasma concentration versus time were obtained. As multiple peaks were found in all three curves, the enterohepatic recycling (EHR) model in the Phoenix software was adapted to describe their PK parameters with an individual PK analysis method. The mean half-lives of intravenous and oral administrations were 10.5 h and 7.4 h, respectively. The estimated bioavailability after oral and supralingual administration was 72.4% and 7.6%, respectively. There was a 0.5 h lag-time presented after supralingual administration. The results suggest that the systemic plasma MPA concentrations were much lower in rats receiving supralingual administration compared to those receiving doses from the other two routes, and the amount of MPA accumulated in the tongue after patch application showed a sustained drug release pattern. Studies on the dynamic of drug retention in the tongue after supralingual administration showed that ~3.8% of the dose was accumulated inside of tongue right after the patch removal, ~0.11% of the dose remained after 20 h, and ~20.6% of MPA was not released from the patches 4 h after application. The data demonstrate that supralingual application of an MPA patch can deliver a high amount of drug at the site of administration with little systemic circulation exposure, hence lowering the potential gastrointestinal side effects associated with oral administration. Thus, supralingual administration is a potential alternative route for treating oral lesions.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jong Bong Lee ◽  
Masar Radhi ◽  
Elena Cipolla ◽  
Raj D. Gandhi ◽  
Sarir Sarmad ◽  
...  

Abstract Although adenosine and its analogues have been assessed in the past as potential drug candidates due to the important role of adenosine in physiology, only little is known about their absorption following oral administration. In this work, we have studied the oral absorption and disposition pathways of cordycepin, an adenosine analogue. In vitro biopharmaceutical properties and in vivo oral absorption and disposition of cordycepin were assessed in rats. Despite the fact that numerous studies showed efficacy following oral dosing of cordycepin, we found that intact cordycepin was not absorbed following oral administration to rats. However, 3′-deoxyinosine, a metabolite of cordycepin previously considered to be inactive, was absorbed into the systemic blood circulation. Further investigation was performed to study the conversion of 3′-deoxyinosine to cordycepin 5′-triphosphate in vitro using macrophage-like RAW264.7 cells. It demonstrated that cordycepin 5′-triphosphate, the active metabolite of cordycepin, can be formed not only from cordycepin, but also from 3′-deoxyinosine. The novel nucleoside rescue metabolic pathway proposed in this study could be responsible for therapeutic effects of adenosine and other analogues of adenosine following oral administration. These findings may have importance in understanding the physiology and pathophysiology associated with adenosine, as well as drug discovery and development utilising adenosine analogues.


1997 ◽  
Vol 272 (6) ◽  
pp. R1698-R1703 ◽  
Author(s):  
M. A. Allen ◽  
P. M. Smith ◽  
A. V. Ferguson

Adrenomedullin (ADM) circulates in the blood at concentrations comparable to other vasoactive peptides with established roles in cardiovascular regulation. Intravenously administered ADM produces a clear hypotensive effect, whereas intracerebroventricular microinjections result in increases in blood pressure (BP). Recently, we demonstrated that ADM influences neurons of the area postrema (AP), a central nervous system site implicated in cardiovascular control. However, to address directly the physiological significance of the actions of ADM at the AP, an in vivo microinjection study was undertaken. ADM, at two concentrations (1 and 10 microM), in volumes of 50, 100, and 200 nl, was microinjected into the AP or NTS of 21 urethan-anesthetized male Sprague-Dawley rats. Microinjection of 10 microM ADM (100 nl) resulted in significant transient (2-5 min) increases in BP [120 s area under the curve (AUC): 684.3 +/- 268.6 mmHg/s (P < 0.05)], and heart rate (HR) [AUC: 12.5 +/- 4.5 beats/min (P < 0.05)]. The lower concentration of ADM (1 microM) had no effect on either BP (179.1 +/- 143.6 mmHg/s) or HR (0.8 +/- 2.6 beats/min). ADM was also microinjected into the immediately adjacent nucleus of the solitary tract, where it was found to be without effect on either BP or HR. This study demonstrates, for the first time, a physiological role for ADM acting at a specific brain site, the AP, to produce significant cardiovascular responses.


2014 ◽  
Vol 17 (1) ◽  
pp. 106 ◽  
Author(s):  
Yusuke Tanaka ◽  
Toshiyuki Baba ◽  
Koji Tagawa ◽  
Ryoichi Waki ◽  
Shunji Nagata

Purpose. This study aimed to develop a novel approach for predicting the oral absorption of low-solubility drugs by considering regional differences in solubility and permeability within the gastrointestinal (GI) tract. Methods. Simulated GI fluids were prepared to reflect rat in vivo bile acid and phospholipid concentrations in the upper and lower small intestine. The saturated solubility and permeability of griseofulvin (GF) and albendazole (AZ), a drug with low aqueous solubility, were measured using these simulated fluids, and fraction absorbed (Fa) at time t after oral administration was calculated. Results. The saturated solubility of GF and AZ, a drug with low aqueous solubility, differed considerably between the simulated GI fluids. Large regional differences in drugs concentration were also observed following oral administration in vivo. The predicted Fa values using solubility and permeability data of the simulated GI fluid were found to correspond closely to the in vivo data. Conclusion. These results indicated the importance of evaluating regional differences in drug solubility and permeability in order to predict oral absorption of low-solubility drugs accurately. The new methodology developed in the present study could be useful for new oral drug development. This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For Readers”) may comment by clicking on ABSTRACT on the issue’s contents page.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 107 ◽  
Author(s):  
Iman Saad Ahmed ◽  
Hassan Medhat Rashed ◽  
Hend Fayez ◽  
Faten Farouk ◽  
Rehab Nabil Shamma

In this study, water-soluble chitosan lactate (CL) was reacted with lactobionic acid (LA), a disaccharide with remarkable affinity to hepatic asialoglycoprotein (ASGP) receptors, to form dual liver-targeting LA-modified-CL polymer for site-specific drug delivery to the liver. The synthesized polymer was used to encapsulate baicalin (BA), a promising bioactive flavonoid with pH-dependent solubility, into ultrahigh drug-loaded nanoparticles (NPs) via the ionic gelation method. The successful chemical conjugation of LA with CL was tested and the formulated drug-loaded LA-modified-CL-NPs were assessed in terms of particle size (PS), encapsulation efficiency (EE) and zeta potential (ZP) using full factorial design. The in vivo biodistribution and pharmacokinetics of the designed NPs were assessed using 99mTc-radiolabeled BA following oral administration to mice and results were compared to 99mTc-BA-loaded-LA-free-NPs and 99mTc-BA solution as controls. Results showed that the chemical modification of CL with LA was successfully achieved and the method of preparation of the optimized NPs was very efficient in encapsulating BA into nearly spherical particles with an extremely high EE exceeding 90%. The optimized BA-loaded-LA-modified-CL-NPs showed an average PS of 490 nm, EE of 93.7% and ZP of 48.1 mV. Oral administration of 99mTc-BA-loaded-LA-modified-CL-NPs showed a remarkable increase in BA delivery to the liver over 99mTc-BA-loaded-LA-free-CL-NPs and 99mTc-BA oral solution. The mean area under the curve (AUC0–24) estimates from liver data were determined to be 11-fold and 26-fold higher from 99mTc-BA-loaded-LA-modified-CL-NPs relative to 99mTc-BA-loaded-LA-free-CL-NPs and 99mTc-BA solution respectively. In conclusion, the outcome of this study highlights the great potential of using LA-modified-CL-NPs for the ultrahigh encapsulation of therapeutic molecules with pH-dependent/poor water-solubility and for targeting the liver.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4011-4011 ◽  
Author(s):  
Paul W. Manley ◽  
Jürgen Mestan ◽  
Jennifer Sheng ◽  
Phi Tran ◽  
Mark Kagan

Abstract Background There is a growing tendency for drugs to be grouped according to their perceived ‘class effects’, regardless of the different pharmacological profiles of the parent drugs and of their metabolites. Imatinib, dasatinib, nilotinib, bosutinib and, most recently ponatinib, are approved tyrosine kinase inhibitor (TKI) therapies for chronic myeloid leukemia (CML), which are clinically efficacious as a result of ABL1/ BCR-ABL inhibition. Following their oral administration at standard therapeutic doses, the parent drugs are the major circulating species by area under the curve (AUC). However in the case of imatinib, dasatinib, bosutinib and ponatinib, the exposure of patients to major metabolites can be substantial compared to that of parent drug, with CGP74588 (which is much less active than imatinib against both BCR-ABL and KIT; Bioorg Med Chem 2013;21:3231) representing 10% of imatinib by AUC (Clin Pharmacokinet 2005;44:879); M20 and M24 representing 45 and 25% of dasatinib (Drug Met Disp 2008;36:1341), M2 and M5 representing 19 and 25% of bosutinib (Clinical Pharmacology Biopharmaceutics Review, http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm) and AP24600 representing 58% of ponatinib (Clinical Pharmacology Biopharmaceutics Review, http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm). Such major metabolites might make significant contributions to the on- and off-target effects of the parent drugs in vivoand may be responsible for some of the side-effects observed in patients. Here we report on the metabolism of the potent and selective BCR-ABL inhibitor, nilotinib and the preclinical profile of its major metabolites. Methods The metabolism of nilotinib was characterised in healthy subjects after oral administration of two capsules containing 200 mg [14C]-labelled nilotinib (50 μCi), and blood plasma, feces and urine samples were assayed in an appropriate scintillant either by counting an aliquot directly or after homogenisation, air-drying and solubilisation. Metabolites were characterised and quantified by HPLC with radioactivity detection and identified by mass spectrometry (LC-MS/MS) and, when possible, co-elution with non-radiolabeled authentic samples. Synthesised samples of the metabolites were evaluated in a large panel of assays for potential effects on kinase and non-kinase enzymes, G-protein coupled receptors, cell transporters, ion channels and nuclear receptors. Results The oral absorption of nilotinib was determined to be ≥30% and excretion was mainly into the feces (93.5% of administered radioactivity), with neither nilotinib nor the identified metabolites being detected in the urine. Unchanged nilotinib was the major circulating component in human plasma, accounting for 87.5±9.2% of the total drug-related AUC. The main circulating metabolites were P41.6 (4.7% AUC), P36.5 (6.1% AUC), formed from oxidation of the methyl group in the methyl-imidazole moiety to a hydroxyl or carboxylic acid group, and P42.1 (1.3% AUC) resulting from oxidation of the phenyl-methyl group. Other, more minor metabolites included the pyridine N-oxide P36 and P50, resulting from degradation of the imidazole. All of the metabolites identified in humans were also observed in one or more of the animal species, employed for preclinical safety studies, with the exception of the minor fecal metabolites P38 (pyridine- + pyrimidine-N-oxide) and P40 (pyridine-N-oxide). In comparison to the parent nilotinib, which inhibits the BCR-ABL and KIT tyrosine kinases with mean cellular IC50 values of 20 and 217 nM, only P41.6 (19 and 284 nM), P42.1 (256 and 714 nM) and P50 (39 and 67 nM) exhibited kinase inhibition at concentrations < 2200 nM. In addition, none of the metabolites showed substantial activity at concentrations < 3000 nM against non-kinase targets. Conclusion Following oral administration of nilotinib to humans the predominant circulating species was the parent drug, with >15 minor and trace metabolites being identified. Given their in vitro potencies and target profiles, none of the metabolites are expected to contribute to the in vivo pharmacology of the parent nilotinib. This data further distinguishes the profile of nilotinib from other TKIs used for the treatment of CML. Disclosures: Manley: Novartis Pharmaceuticals: Employment. Sheng:Novartis Pharmaceuticals: Employment. Tran:Novartis Pharmaceuticals: Employment. Kagan:Novartis Pharmaceuticals: Employment.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1157
Author(s):  
Ali M. Nasr ◽  
Sameh S. Elhady ◽  
Shady A. Swidan ◽  
Noha M. Badawi

Introduction: Several recent studies have shown that the role of cyclooxygenase 2 (COX-2) in carcinogenesis has become more evident. It affects angiogenesis, apoptosis, and invasion, and plays a key role in the production of carcinogens. It has also been reported that COX-2 inhibitors such as celecoxib (CLX) might play an effective role in preventing cancer formation and progression. Formulation of CLX into nanovesicles is a promising technique to improve its bioavailability and anticancer efficacy. Aim: The aim of this study is to optimize and evaluate the anticancer efficacy of CLX-loaded in-situ provesicular powder composed of surfactants and fatty alcohol-based novel nanovesicles in-vitro and determine its pharmacokinetic parameters in-vivo. Methods: The novel provesicular powders were prepared by the slurry method and optimized by 32 full factorial design using the desirability function. Results: Small mean particle size was achieved by the formed vesicles with value of 351.7 ± 1.76 nm and high entrapment efficacy of CLX in the formed vesicles of 97.53 ± 0.84%. Solid state characterization of the optimized formulation showed that the powder was free flowing, showed no incompatibilities between drug and excipients and showed smooth texture. The cytotoxic study of the optimized formula on HCT-116, HepG-2, A-549, PC-3 and MCF-7 cell lines showed significant increase in activity of CLX compared to its free form. The pharmacokinetic study on albino rabbits after oral administration showed significant increase in the area under the curve (AUC)0–24 h and significantly higher oral relative bioavailability of the optimized formulation compared to Celebrex® 100 mg market product (p < 0.05). Conclusion: All findings of this study suggest the potential improvement of efficacy and bioavailability of CLX when formulated in the form of in-situ provesicular powder composed of surfactants and fatty alcohol-based novel nanovesicles for its repositioned use as an anticancer agent.


Sign in / Sign up

Export Citation Format

Share Document