scholarly journals Monoterpenoid Indole Alkaloids from Catharanthus roseus Cultivated in Yunnan

2015 ◽  
Vol 10 (12) ◽  
pp. 1934578X1501001
Author(s):  
Bei Wang ◽  
Lu Liu ◽  
Ying-Ying Chen ◽  
Qiong Li ◽  
Dan Li ◽  
...  

A new monoterpenoid indole alkaloid, 15,20-dehydro-3α-(2-oxopropyl) coronaridine (1), along with sixteen analogues (2–17) were isolated from the leaves of Catharanthus roseus cultivated in Yunnan. The new alkaloid was elucidated on the basis of extensive spectroscopic analysis, and the known alkaloids were identified by comparison with the reported spectroscopic data. Among them, alkaloid 16 was isolated from Catharanthus for the first time.

2017 ◽  
Vol 72 (1-2) ◽  
pp. 21-25 ◽  
Author(s):  
Marwa Elsbaey ◽  
Kadria F.M. Ahmed ◽  
Mahmoud F. Elsebai ◽  
Ahmed Zaghloul ◽  
Mohamed M.A. Amer ◽  
...  

AbstractAn indole alkaloid, 2-(5-hydroxy-1H-indol-3-yl)-2-oxo-acetic acid (1) isolated for the first time from nature, in addition to the nine known compounds 5-hydroxy-1H-indole-3-carboxylic acid methyl ester (2), alocasin B (3), hyrtiosin B (4), α-monopalmitin (5), 1-O-β-D-glucopyranosyl-(2S, 3R, 4E, 8Z)-2-[(2(R)-hydroctadecanoyl) amido]-4,8-octadecadiene-1,3-diol (6), 3-epi-betulinic acid (7), 3-epi-ursolic acid (8),β-sitosterol (9) andβ-sitosterol 3-O-β-D-glucoside (10) were isolated from the rhizomes ofAlocasia macrorrhiza(Araceae). Their structures were elucidated by 1D and 2D NMR spectroscopic data. Of these compounds,6exhibited the strongest cytotoxicity against the four tested human cancer cell lines (IC50of about 10 µM against Hep-2 larynx cancer cells).


1979 ◽  
Vol 34 (7-8) ◽  
pp. 541-545 ◽  
Author(s):  
Jürgen Schallenberg ◽  
Jochen Berlin

Several cell lines resistant to 5-methyltryptophan were selected from wild type cells of different Catharanthus roseus suspension cultures. The resistant cells had up to 30 times tne normal levels of free tryptophan. Despite the increased pool size of tryptophan anthranilate synthetase activity of resistant cells was as sensitive to inhibition by ʟ-tryptophan as wild type cells. The overproduction of tryptophan did not lead to intensified accumulation of tryptamine nor of indole alkaloids. This was supported by a low conversion of tryptophan to tryptamine in vivo and in vitro. The overpro­duction of one of the primary precursors was evidently not sufficient to stimulate the rate of indole alkaloid synthesis in Catharanthus cells.


2015 ◽  
Vol 112 (26) ◽  
pp. 8130-8135 ◽  
Author(s):  
Alex Van Moerkercke ◽  
Priscille Steensma ◽  
Fabian Schweizer ◽  
Jacob Pollier ◽  
Ivo Gariboldi ◽  
...  

Plants make specialized bioactive metabolites to defend themselves against attackers. The conserved control mechanisms are based on transcriptional activation of the respective plant species-specific biosynthetic pathways by the phytohormone jasmonate. Knowledge of the transcription factors involved, particularly in terpenoid biosynthesis, remains fragmentary. By transcriptome analysis and functional screens in the medicinal plant Catharanthus roseus (Madagascar periwinkle), the unique source of the monoterpenoid indole alkaloid (MIA)-type anticancer drugs vincristine and vinblastine, we identified a jasmonate-regulated basic helix–loop–helix (bHLH) transcription factor from clade IVa inducing the monoterpenoid branch of the MIA pathway. The bHLH iridoid synthesis 1 (BIS1) transcription factor transactivated the expression of all of the genes encoding the enzymes that catalyze the sequential conversion of the ubiquitous terpenoid precursor geranyl diphosphate to the iridoid loganic acid. BIS1 acted in a complementary manner to the previously characterized ethylene response factor Octadecanoid derivative-Responsive Catharanthus APETALA2-domain 3 (ORCA3) that transactivates the expression of several genes encoding the enzymes catalyzing the conversion of loganic acid to the downstream MIAs. In contrast to ORCA3, overexpression of BIS1 was sufficient to boost production of high-value iridoids and MIAs in C. roseus suspension cell cultures. Hence, BIS1 might be a metabolic engineering tool to produce sustainably high-value MIAs in C. roseus plants or cultures.


2021 ◽  
Vol 43 (11) ◽  
pp. 2085-2103
Author(s):  
Yongliang Liu ◽  
Barunava Patra ◽  
Sanjay Kumar Singh ◽  
Priyanka Paul ◽  
Yan Zhou ◽  
...  

Abstract Plants synthesize a vast array of specialized metabolites that primarily contribute to their defense and survival under adverse conditions. Many of the specialized metabolites have therapeutic values as drugs. Biosynthesis of specialized metabolites is affected by environmental factors including light, temperature, drought, salinity, and nutrients, as well as pathogens and insects. These environmental factors trigger a myriad of changes in gene expression at the transcriptional and posttranscriptional levels. The dynamic changes in gene expression are mediated by several regulatory proteins that perceive and transduce the signals, leading to up- or down-regulation of the metabolic pathways. Exploring the environmental effects and related signal cascades is a strategy in metabolic engineering to produce valuable specialized metabolites. However, mechanistic studies on environmental factors affecting specialized metabolism are limited. The medicinal plant Catharanthus roseus (Madagascar periwinkle) is an important source of bioactive terpenoid indole alkaloids (TIAs), including the anticancer therapeutics vinblastine and vincristine. The emerging picture shows that various environmental factors significantly alter TIA accumulation by affecting the expression of regulatory and enzyme-encoding genes in the pathway. Compared to our understanding of the TIA pathway in response to the phytohormone jasmonate, the impacts of environmental factors on TIA biosynthesis are insufficiently studied and discussed. This review thus focuses on these aspects and discusses possible strategies for metabolic engineering of TIA biosynthesis. Purpose of work Catharanthus roseus is a rich source of bioactive terpenoid indole alkaloids (TIAs). The objective of this work is to present a comprehensive account of the influence of various biotic and abiotic factors on TIA biosynthesis and to discuss possible strategies to enhance TIA production through metabolic engineering.


2012 ◽  
Vol 7 (6) ◽  
pp. 1934578X1200700
Author(s):  
Fatemeh Bahadori ◽  
Gülaçtι Topçu ◽  
Mehmet Boǧa ◽  
Ayla Türkekul ◽  
Ufuk Kolak ◽  
...  

A new indole alkaloid, 11-hydroxypolyneuridine, was isolated from Vinca major subsp. major L. and the known indole alkaloids vallesiachotamine and isovallesiachotamine from Vinca minor L. This is the first report on the alkaloids of both Vinca species growing in Turkey; vallesiachotamine and isovallesiachotamine were isolated from a Vinca species for the first time. V. minor may be considered as a new source for these two alkaloids due to their occurrence in high amount in the aerial parts of the plant. The alkaloid extracts of the two Vinca species were found to have high lipid peroxidation inhibitory and DPPH radical scavenging activities. Anticholinesterase activity of the extracts was also very strong.


2017 ◽  
Vol 12 (4) ◽  
pp. 1934578X1701200
Author(s):  
Yan-Ping Liu ◽  
A-Hong Chen ◽  
Ruo-Heng Li ◽  
Hui-Wen Yang ◽  
Hai-Nan Bao ◽  
...  

A new monoterpenoid indole alkaloid, ochroborbone (1), along with five known alkaloids (2–6), were isolated from the stems and leaves of Ochrosia borbonica. Among them, ochroborbone (1) is a rare C17-nor monoterpenoid indole alkaloid, and the known compounds (2-6) were isolated from Ochrosia for the first time. These structures were established on the basis of extensive spectroscopic methods. All isolated compounds were evaluated for their cytotoxicities against five human cancer cell lines: HL-60, SMMC-7721, A-549, MCF-7 and SW480 in vitro. Compounds 1 and 2 exhibited inhibitory effects with IC50 values comparable with those of cisplatin.


2005 ◽  
Vol 66 (15) ◽  
pp. 1797-1803 ◽  
Author(s):  
Zoia Mincheva ◽  
Martine Courtois ◽  
Françoise Andreu ◽  
Marc Rideau ◽  
Marie-Claude Viaud-Massuard

Sign in / Sign up

Export Citation Format

Share Document