scholarly journals New Metabolite With Inhibitory Activity Against α-Glucosidase and α-Amylase From Endophytic Chaetomium globosum

2020 ◽  
Vol 15 (7) ◽  
pp. 1934578X2094133
Author(s):  
Jianzhao Qi ◽  
Dacheng Wang ◽  
Xia Yin ◽  
Qiang Zhang ◽  
Jin-Ming Gao

An efficient bioactive tracking separation strategy based on liquid-liquid extraction and high-speed counter-current chromatography (HSCCC) was developed and used to isolate bioactive natural products from the endophytic fungus Chaetomium globosum residing in Ginkgo biloba. Using HSCCC, the novel metabolite chaetoglobol acid (1) as well as 11 known compounds (2-12), including 6 chlorinated azaphilones and 3 cytochalasans, were successfully isolated. The structure of compound 1 was elucidated through spectroscopic analyses and HRESIMS data. Compound 1 possesses a rare C11-polyketide skeleton. All isolates were evaluated for their α-glucosidase and α-amylase inhibitory activities in vitro. Compound 1 showed high inhibition against α-glucosidase (IC50 = 3.04 μM), 18-fold higher than that of acarbose (IC50 = 54.74 μM), and also displayed moderate inhibitory activity against α-amylase (IC50 = 22.18 μM). As the results indicated that 1 has inhibitory effects against both α-glucosidase and α-amylase, 1 may be a promising candidate for mediating type 2 diabetes.

2013 ◽  
Vol 834-836 ◽  
pp. 577-581
Author(s):  
Jian Chao Deng ◽  
Gai Gai Niu ◽  
Lai Hao Li ◽  
Xian Qing Yang ◽  
Yong Chuan Deng ◽  
...  

Flavonoids was isolated from canavalia maritime by accelerated solvent extraction (ASE) coupled with high-speed counter-current chromatography (HSCCC). The antioxidant activities of flavonoids were investigated in vitro and evaluated by IC50. The results indicated that flavonoids possessed obvious reducing power and significant inhibitory effects on 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical, hydroxyl radical and superoxide radical. These results suggest that canavalia maritime flavonoids could be a suitable natural antioxidant for humans.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chunsheng Zhu ◽  
Hongjuan Niu ◽  
Anzheng Nie ◽  
Meng Bian

AbstractClerodendranthus Spicatus is a traditional Dais medi-edible plant and it has been proven to have good blood glucose-lowering efficacy. However, the material basis of Clerodendranthus Spicatus has not been clarified yet and therefore needs to be determined. In this paper, the effective ingredients of this medicine were purified by high-speed counter-current chromatography. Alongside, their potential hypoglycemic activity was determined by α-glucosidase inhibitory activities in vitro and molecular docking. Finally, five compounds were purified and identified as 2-caffeoyl-L-tartaric acid (1), N-(E)-caffeoyldopamine (2), rosmarinc acid (3), methyl rosmarinate (4), 6,7,8,3′,4′-Pentamethoxyflavone (5). Examination of α-glucosidase inhibitory activity in vitro showed that 2-caffeoyl-L-tartaric acid and rosmarinic acid had a higher inhibitory activity than acarbose. Molecular docking indicated that the affinity energy of the identified compounds ranged from − 7.6 to − 8.6 kcal/mol, a more desirable result than acarbose (− 6.6 kcal/mol). Particularly, rosmarinc acid with the lowest affinity energy of − 8.6 kcal/mol was wrapped with 6 hydrogen bonds. Overall, α-glucosidase inhibitory activities and molecular docking suggested that rosmarinc acid was likely to be a promising hypoglycemic drug.


Author(s):  
Pınar Ercan ◽  
Sedef Nehir El

Abstract. The goals of this study were to determine and evaluate the bioaccessibility of total anthocyanin and procyanidin in apple (Amasya, Malus communis), red grape (Papazkarası, Vitis vinifera) and cinnamon (Cassia, Cinnamomum) using an in vitro static digestion system based on human gastrointestinal physiologically relevant conditions. Also, in vitro inhibitory effects of these foods on lipid (lipase) and carbohydrate digestive enzymes (α-amylase and α-glucosidase) were performed with before and after digested samples using acarbose and methylumbelliferyl oleate (4MUO) as the positive control. While the highest total anthocyanin content was found in red grape (164 ± 2.51 mg/100 g), the highest procyanidin content was found in cinnamon (6432 ± 177.31 mg/100 g) (p < 0.05). The anthocyanin bioaccessibilities were found as 10.2 ± 1%, 8.23 ± 0.64%, and 8.73 ± 0.70% in apple, red grape, and cinnamon, respectively. The procyanidin bioaccessibilities of apple, red grape, and cinnamon were found as 17.57 ± 0.71%, 14.08 ± 0.74% and 18.75 ± 1.49%, respectively. The analyzed apple, red grape and cinnamon showed the inhibitory activity against α-glucosidase (IC50 544 ± 21.94, 445 ± 15.67, 1592 ± 17.58 μg/mL, respectively), α-amylase (IC50 38.4 ± 7.26, 56.1 ± 3.60, 3.54 ± 0.86 μg/mL, respectively), and lipase (IC50 52.7 ± 2.05, 581 ± 54.14, 49.6 ± 2.72 μg/mL), respectively. According to our results apple, red grape and cinnamon have potential to inhibit of lipase, α-amylase and α-glucosidase digestive enzymes.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3137
Author(s):  
Shuguang Guan ◽  
Qiaoli Pu ◽  
Yinan Liu ◽  
Honghong Wu ◽  
Wenbo Yu ◽  
...  

Crocins are highly valuable natural compounds for treating human disorders, and they are also high-end spices and colorants in the food industry. Due to the limitation of obtaining this type of highly polar compound, the commercial prices of crocins I and II are expensive. In this study, macroporous resin column chromatography combined with high-speed counter-current chromatography (HSCCC) was used to purify crocins I and II from natural sources. With only two chromatographic steps, both compounds were simultaneously isolated from the dry fruit of Gardenia jasminoides, which is a cheap herbal medicine distributed in a number of countries. In an effort to shorten the isolation time and reduce solvent usage, forward and reverse rotations were successively utilized in the HSCCC isolation procedure. Crocins I and II were simultaneously obtained from a herbal resource with high recoveries of 0.5% and 0.1%, respectively, and high purities of 98.7% and 99.1%, respectively, by HPLC analysis. The optimized preparation method was proven to be highly efficient, convenient, and cost-effective. Crocins I and II exhibited inhibitory activity against ATP citrate lyase, and their IC50 values were determined to be 36.3 ± 6.24 and 29.7 ± 7.41 μM, respectively.


2020 ◽  
Vol 6 (3) ◽  
pp. 176
Author(s):  
Samuel Álvarez-García ◽  
Sara Mayo-Prieto ◽  
Santiago Gutiérrez ◽  
Pedro Antonio Casquero

Self-inhibitory processes are a common feature shared by different organisms. One of the main mechanisms involved in these interactions regarding microorganisms is the release of toxic diffusible substances into the environment. These metabolites can exert both antimicrobial effects against other organisms as well as self-inhibitory ones. The in vitro evaluation of these effects against other organisms has been widely used to identify potential biocontrol agents against phytopathogenic microorganisms. In the present study, we performed membrane assays to compare the self-inhibitory effects of soluble metabolites produced by several Trichoderma isolates and their antifungal activity against a phytopathogenic strain of Fusarium oxysporum. The results demonstrated that Trichoderma spp. present a high self-inhibitory activity in vitro, being affected in both their growth rate and the macroscopic structure of their colonies. These effects were highly similar to those exerted against F. oxysporum in the same conditions, showing no significant differences in most cases. Consequently, membrane assays may not be very informative by themselves to assess putative biocontrol capabilities. Therefore, different methods, or a combination of antifungal and self-inhibitory experiments, could be a better approach to evaluate the potential biocontrol activity of microbial strains in order to pre-select them for further in vivo trials.


2005 ◽  
Vol 51 (8) ◽  
pp. 629-636 ◽  
Author(s):  
J H Kang ◽  
M S Lee

A strain of Enterococcus faecium that exhibits antibacterial activity against Helicobacter pylori was isolated from the feces of newborn babies. This strain was selected for its ability to inhibit the growth of H. pylori and to withstand harsh environmental conditions, such as acidic pH and high bile concentration. Biochemical tests and 16S rRNA sequencing specific for Enterococcus faecium GM-1 were used to identify the isolated bacterial strain. In vitro studies were used to investigate the inhibitory effects of E. faecium GM-1 on H. pylori. These results showed that the culture supernatant of E. faecium GM-1 significantly decreased the viability and urease activity of H. pylori. This inhibitory activity remained after adjustment of pH of culture supernatant to neutral. However, treatment with proteolytic enzymes reduced the anti-H. pylori activity of GM-1. Therefore, some substance(s) of E. faecium GM-1 other than pH and lactic acid might be associated with this inhibitory activity. Analysis by electron microscopy also demonstrated that the addition of GM-1 destroyed the cell structure of H. pylori. Additional studies suggested that the binding of H. pylori to human colonial cells decreased in the presence of GM-1.Key words: Enterococcus faecium, Helicobacter pylori, inhibition, human fecal strain, proteinaceous substance(s).


1961 ◽  
Vol 113 (4) ◽  
pp. 625-656 ◽  
Author(s):  
Igor Tamm ◽  
Rostom Bablanian ◽  
Marjorie M. Nemes ◽  
Clifford H. Shunk ◽  
Franklin M. Robinson ◽  
...  

The virus inhibitory activity and selectivity of certain benzimidazole, benzotriazole, and naphthimidazole derivatives were determined with influenza B and polio type 2 viruses. Among the sixty-five compounds examined, several were highly active inhibitors of influenza B virus multiplication in the chorioallantoic membrane in vitro. The following compounds, listed in order of increasing inhibitory activity, were more than 100 times as active as benzimidazole: 5-(4'-toluenesulfonamido)-benzimidazole, 5-hydroxybenzotriazole-4-carboxy-α-naphthylamide, 4,5,6-trichlorobenzotriazole, 5-(3',4'-dichlorobenzenesulfonamido)-benzimidazole, 5-(3',4'-dichlorobenzenesulfonamido) - 1 - (3'',4'' - dichlorobenzenesulfonyl)-benzimidazole, 4-(p-chlorophenylazo)-5-hydroxybenzotriazole, and 4,5,6,7-tetrachlorobenzotriazole. However, none showed high selectivity. Of the sixty-five compounds studied with influenza virus, twenty-five were also examined with poliovirus type 2 in monkey kidney cells in vitro. Included in this group were five of the seven most active inhibitors of influenza virus, listed above. All five were more than 100 times as active in inhibiting poliovirus multiplication as the reference compound. In addition to these, two other compounds were highly active: 2-(α-hydroxybenzyl)-benzimidazole (HBB), and 2-(α-hydroxybenzyl)-5-chlorobenzimidazole, with relative inhibitory activities of 78 and 130, respectively. These two compounds, and the much less active 5,6-dichloro derivative of HBB, were the only ones which showed no, or only slight, toxic effects on cells at concentrations sufficient to cause considerable inhibition of poliovirus multiplication. Furthermore, HBB and the 5-chloro derivative were the only compounds which caused significant inhibition of the cytopathic effects of poliovirus. HBB, and its 5-chloro and 5,6-dichloro derivatives had no effect on the multiplication of influenza B virus in the chorioallantoic membrane. In addition, HBB failed to inhibit influenza B virus multiplication and cytopathic effects in monkey kidney cells. Inhibition of poliovirus-induced cell damage by HBB was characterized by the following features: the curves relating reduction in virus yield or cytopathic effects to concentration of the compound followed an approximately parallel course; somewhat higher concentrations were required to inhibit virus-induced cell damage than to reduce virus yield. HBB suppressed viral cytopathic effects for a period of time which varied directly with the concentration of compound, and inversely with the size of virus inoculum. The development of virus-induced cell damage in treated cultures on prolonged incubation was not due to inactivation of HBB. The inhibitory effect of HBB on virus-induced cell damage was reversible by removal of the compound. HBB inhibited viral cytopathic effects when given during the exponential increase phase in virus multiplication. Inhibition of virus-induced cell damage by HBB was demonstrated by photomicrographs. HBB did not inactivate the infectivity of poliovirus type 2.


2019 ◽  
Vol 15 (1) ◽  
pp. 8-16 ◽  
Author(s):  
Zahra Heydari ◽  
Maryam Mohammadi-Khanaposhtani ◽  
Somaye Imanparast ◽  
Mohammad A. Faramarzi ◽  
Mohammad Mahdavi ◽  
...  

Background: Pyrano[3,2-c]quinoline derivatives 6a–n were synthesized via simple two-step reactions and evaluated for their in vitro α-glucosidase inhibitory activity. </P><P> Methods: Pyrano[3,2-c]quinoline derivatives 6a–n derivatives were prepared from a two-step reaction: cycloaddition reaction between 1-naphthyl amine 1 and malonic acid 2 to obtain benzo[h]quinoline-2(1H)-one 3 and reaction of 3 with aryl aldehydes 4 and Meldrum’s acid 5. The anti- α-glucosidase activity and kinetic study of the synthesized compounds were evaluated using α-glucosidase from Saccharomyces cerevisiae and p-nitrophenyl-a-D-glucopyranoside as substrate. The α-glucosidase inhibitory activity of acarbose was evaluated as positive control. Results: All of the synthesized compounds, except compounds 6i and 6n, showed more inhibitory activity than the standard drug acarbose and were also found to be non-cytotoxic. Among the synthesized compounds, 1-(2-bromophenyl)-1H-benzo[h]pyrano[3,2-c]quinoline-3,12(2H,11H)-dione 6e displayed the highest α-glucosidase inhibitory activity (IC50 = 63.7 ± 0.5 µM). Kinetic study of enzyme inhibition indicated that the most potent compound, 6e, is a non-competitive inhibitor of α-glucosidase with a Ki value of 72 µM. Additionally, based on the Lipinski rule of 5, the synthesized compounds were found to be potential orally active drugs. Conclusion: Our results suggest that the synthesized compounds are promising candidates for treating type 2 diabetes.


Sign in / Sign up

Export Citation Format

Share Document