scholarly journals Activity of Cordycepin From Cordyceps sinensis Against Drug-Resistant Tumor Cells as Determined by Gene Expression and Drug Sensitivity Profiling

2021 ◽  
Vol 16 (2) ◽  
pp. 1934578X2199335
Author(s):  
Nadire Özenver ◽  
Joelle C. Boulos ◽  
Thomas Efferth

Cordycepin is one of the substantial components of the parasitic fungus Cordyceps sinensis as well as other Cordyceps species. It exerts various effects such as antimetastatic, antiinflammatory, antioxidant, and neuroprotective activities. Assorted studies revealed in vitro and in vivo anticancer influence of cordycepin and put forward its potential for cancer therapy. However, the role of multidrug resistance-associated mechanisms for the antitumor effect of cordycepin has not been investigated in great detail thus far. Therefore, we searched cordycepin’s cytotoxicity with regard to well-known anticancer drug resistance mechanisms, including ABCB1, ABCB5, ABCC1, ABCG2, EGFR, and TP53, and identified putative molecular determinants related to the cellular responsiveness of cordycepin. Bioinformatic analyses of NCI microarray data and gene promoter transcription factor binding motif analyses were performed to specify the mechanisms of cordycepin towards cancer cells. COMPARE and hierarchical analyses led to the detection of the genes involved in cordycepin’s cytotoxicity and sensitivity and resistance of cell lines towards cordycepin. Tumor-type dependent response and cross-resistance profiles were further unravelled. We found transcription factors potentially involved in the common transcriptional regulation of the genes identified by COMPARE analyses. Cordycepin bypassed resistance mediated by the expression of ATP-binding cassete (ABC) transporters (P-gp, ABCB5, ABCC1 and BCRP) and mutant epidermal growth factor receptor (EGFR). The drug sensitivity profiles of several DNA Topo I and II inhibitors were significantly correlated with those of cordycepin’s activity. Among eight different tumor types, prostate cancer was the most sensitive, whereas renal carcinoma was the most resistant to cordycepin. NF-κB was discovered as a common transcription factor. The potential of cordycepin is set forth as a potential new drug lead by bioinformatic evaluations. Further experimental studies are warranted for better understanding of cordycepin’s activity against cancer.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 107-107
Author(s):  
Bianca F. Goemans ◽  
Gertjan J.L. Kaspers ◽  
Susanne J.H. Vijverberg ◽  
Anne H. Loonen ◽  
Ursula Creutzig ◽  
...  

Abstract Gemtuzumab ozogamicin (GO or Mylotarg®) is increasingly being used in the treatment of AML. GO consists of a cytotoxic drug - calicheamicin which is conjugated to an anti-CD33 antibody. Most AML patients highly express CD33 on their blasts. Studies relating CD33 expression to response to GO have failed to show an association. Although 30–50% of patients respond to Mylotarg®, the causes of primary resistance to this drug remain unclear. Previous reports have studied P-gp status and CD33 expression as a cause of resistance to GO. Another factor that might determine response to GO is cellular drug resistance to calicheamicin. In this study we examined in vitro resistance to calicheamicin in 90 initially diagnosed and 32 relapsed pediatric AML samples using the 4 day MTT assay (concentration range 0.000004 – 0.4 μg/ml). The LC50 value, the drug concentration at which 50% of the cells is killed by the drug, is used as a measure of sensitivity. In addition to calicheamicin, some samples were also tested successfully for in vitro sensitivity to etoposide, cytarabine, daunorubicin, idarubicin, mitoxantrone, 6-thioguanine, vincristine and L-asparaginase. The characteristics of the 122 pediatric AML samples included are as follows: 62% boys, median age 9.6 years, median WBC 53.0*109/L, FAB types M0 n=9, M1 n=10, M2 n=18, M3 n=9, M4 n=33, M5 n=24, M7 n=3, unknown n=16. There was a more than 100,000 fold difference in calicheamicin sensitivity between the most sensitive and the most resistant patient samples. FAB M2 samples taken at initial diagnosis (n=13) were significantly more resistant to calicheamicin compared to the other FAB types (Resistance Ratio (RR)=2.5, median LC50 0.033 vs. 0.013 μg/ml, p=0.008). Newly diagnosed AML samples were significantly more sensitive to calicheamicin compared to relapsed AML samples (RR=0.68, median LC50 0.023 vs. 0.034 μg/ml, p=0.042) (although these patients had not been treated with calicheamicin). There was strong cross-resistance between calicheamicin and the anthracyclines idarubicin (Spearmans rho = 0.73, p<0.0001, n=23), daunorubicin (rho=0.61, p<0.0001, n=103) and mitoxantrone (rho=0.52, p=0.039, n=16). In addition, there was moderate cross-resistance with etoposide (rho=0.42, p<0.0001, n=101). No cross-resistance was observed between calicheamicin and cytarabine (rho=0.11, p=0.28, n=106), 6-thioguanine (rho=0.20, p=0.054, n=97), vincristine (rho=0.12, p=0.44, n=46) or L-asparaginase (rho=0.21, p=0.16, n=45). In conclusion, the interpatient differences in calicheamicin sensitivity are the largest differences in in vitro drug sensitivity we have ever observed in pediatric AML. FAB M2 samples are 2.5 fold more resistant to calicheamicin than samples with other FAB types. Initially diagnosed pediatric AML samples are 1.5 fold more sensitive to calicheamicin than relapsed AML samples. There is marked cross-resistance between calicheamicin and the related anthracyclin compounds. Given the large differences in sensitivity to calicheamicin in pediatric AML samples, it is likely that calicheamicin resistance plays a role in resistance to Mylotarg®.


2006 ◽  
Vol 80 (14) ◽  
pp. 6883-6894 ◽  
Author(s):  
S. Kehlenbeck ◽  
U. Betz ◽  
A. Birkmann ◽  
B. Fast ◽  
A. H. Göller ◽  
...  

ABSTRACT We have identified dihydroxythiophenes (DHT) as a novel series of human immunodeficiency virus type 1 (HIV-1) integrase inhibitors with broad antiviral activities against different HIV isolates in vitro. DHT were discovered in a biochemical integrase high-throughput screen searching for inhibitors of the strand transfer reaction of HIV-1 integrase. DHT are selective inhibitors of integrase that do not interfere with virus entry, as shown by the inhibition of a vesicular stomatitis virus G-pseudotyped retroviral system. Moreover, in quantitative real-time PCR experiments, no effect on the synthesis of viral cDNA could be detected but rather an increase in the accumulation of 2-long-terminal-repeat cycles was detected. This suggests that the integration of viral cDNA is blocked. Molecular modeling and the structure activity relationship of DHT demonstrate that our compound fits into a two-metal-binding motif that has been suggested as the essential pharmacophore for diketo acid (DKA)-like strand transfer inhibitors (Grobler et al., Proc. Natl. Acad. Sci. USA 99:6661-6666, 2002.). This notion is supported by the profiling of DHT on retroviral vectors carrying published resistance mutations for DKA-like inhibitors where DHT showed partial cross-resistance. This suggests that DHT bind to a common site in the catalytic center of integrase, albeit with an altered binding mode. Taken together, our findings indicate that DHT are novel selective strand transfer inhibitors of integrase with a pharmacophore homologous to DKA-like inhibitors.


2005 ◽  
Vol 79 (9) ◽  
pp. 5653-5664 ◽  
Author(s):  
Wendy Maury ◽  
Robert J. Thompson ◽  
Quentin Jones ◽  
Sarahann Bradley ◽  
Tara Denke ◽  
...  

ABSTRACT Equine infectious anemia virus (EIAV) is a lentivirus with in vivo cell tropism primarily for tissue macrophages; however, in vitro the virus can be adapted to fibroblasts and other cell types. Tropism adaptation is associated with both envelope and long terminal repeat (LTR) changes, and findings strongly suggest that these regions of the genome influence cell tropism and virulence. Furthermore, high levels of genetic variation have been well documented in both of these genomic regions. However, specific EIAV nucleotide or amino acid changes that are responsible for cell tropism changes have not been identified. A study was undertaken with the highly virulent, macrophage-tropic strain of virus EIAVwyo to identify LTR changes associated with alterations in cell tropism. We found the stepwise generation of a new transcription factor binding motif within the enhancer that was associated with adaptation of EIAV to endothelial cells and fibroblasts. An LTR that contained the new motif had enhanced transcriptional activity in fibroblasts, whereas the new site did not alter LTR activity in a macrophage cell line. This finding supports a previous prediction that selection for new LTR genetic variants may be a consequence of cell-specific selective pressures. Additional investigations of the EIAVwyo LTR were performed in vivo to determine if LTR evolution could be detected over the course of a 3-year infection. Consistent with previous in vivo findings, we observed no changes in the enhancer region of the LTR over that time period, indicating that the EIAVwyo LTR was evolutionarily stable in vivo.


2005 ◽  
Vol 280 (43) ◽  
pp. 36429-36441 ◽  
Author(s):  
Niovi Santama ◽  
Stephen C. Ogg ◽  
Anna Malekkou ◽  
Spyros E. Zographos ◽  
Karsten Weis ◽  
...  

Coilin is a marker protein for the Cajal body, a subnuclear domain acting as a site for assembly and maturation of nuclear RNA-protein complexes. Using a yeast two-hybrid screen to identify coilin-interacting proteins, we have identified hCINAP (human coilin interacting nuclear ATPase protein), a nuclear factor of 172 amino acids with a P-loop nucleotide binding motif and ATPase activity. The hCINAP protein sequence is highly conserved across its full-length from human to plants and yeast and is ubiquitously expressed in all human tissues and cell lines tested. The yeast orthologue of CINAP is a single copy, essential gene. Tagged hCINAP is present in complexes containing coilin in mammalian cells and recombinant, Escherichia coli expressed hCINAP binds directly to coilin in vitro. The 214 carboxyl-terminal residues of coilin appear essential for the interaction with hCINAP. Both immunofluorescence and fluorescent protein tagging show that hCINAP is specifically nuclear and distributed in a widespread, diffuse nucleoplasmic pattern, excluding nucleoli, with some concentration also in Cajal bodies. Overexpression of hCINAP in HeLa cells results in a decrease in the average number of Cajal bodies per nucleus, consistent with it affecting either the stability of Cajal bodies and/or their rate of assembly. The hCINAP mRNA is an alternatively spliced transcript from the TAF9 locus, which encodes the basal transcription factor subunit TAFIID32. However, hCINAP and TAFIID32 mRNAs are translated from different ATG codons and use distinct reading frames, resulting in them having no identity in their respective protein sequences.


2000 ◽  
Vol 301 (4) ◽  
pp. 783-793 ◽  
Author(s):  
Fanyi Jiang ◽  
Susanne Wisén ◽  
Mikael Widersten ◽  
Birgitta Bergman ◽  
Bengt Mannervik

2016 ◽  
Author(s):  
David Felix Lamparter ◽  
Daniel Marbach ◽  
Rico Rueedi ◽  
Sven Bergmann ◽  
Zoltan Kutalik

To better understand genome regulation, it is important to uncover the role of transcription factors in the process of chromatin structure establishment and maintenance. Here we present a data-driven approach to systematically characterize transcription factors that are relevant for this process. Our method uses a linear mixed modeling approach to combine data sets of transcription factor binding motif enrichments in open chromatin and gene expression across the same set of cell lines. Applying this approach to the ENCODE data set we confirm already known and imply numerous novel transcription factors in playing a role in the establishment or maintenance of open chromatin.


2016 ◽  
Author(s):  
Jaime Abraham Castro-Mondragon ◽  
Sébastien Jaeger ◽  
Denis Thieffry ◽  
Morgane Thomas-Chollier ◽  
Jacques van Helden

ABSTRACTTranscription Factor (TF) databases contain multitudes of motifs from various sources, from which non-redundant collections are derived by manual curation. The advent of high-throughput methods stimulated the production of novel collections with increasing numbers of motifs. Meta-databases, built by merging these collections, contain redundant versions, because available tools are not suited to automatically identify and explore biologically relevant clusters among thousands of motifs. Motif discovery from genome-scale data sets (e.g. ChIP-seq peaks) also produces redundant motifs, hampering the interpretation of results. We present matrix-clustering, a versatile tool that clusters similar TFBMs into multiple trees, and automatically creates non-redundant collections of motifs. A feature unique to matrix-clustering is its dynamic visualisation of aligned TFBMs, and its capability to simultaneously treat multiple collections from various sources. We demonstrate that matrix-clustering considerably simplifies the interpretation of combined results from multiple motif discovery tools and highlights biologically relevant variations of similar motifs. By clustering 24 entire databases (>7,500 motifs), we show that matrix-clustering correctly groups motifs belonging to the same TF families, and can drastically reduce motif redundancy. matrix-clustering is integrated within the RSAT suite (http://rsat.eu/), accessible through a user-friendly web interface or command-line for its integration in pipelines.


1997 ◽  
Vol 17 (9) ◽  
pp. 5288-5298 ◽  
Author(s):  
N H Kuldell ◽  
S Buratowski

Biochemical analysis of proteins necessary for transcription initiation by eukaryotic RNA polymerase II (pol II) has identified transcription factor IIE (TFIIE) as an essential component of the reaction. To better understand the role of TFIIE in transcription, we isolated conditional alleles of TFA1, the gene encoding the large subunit of TFIIE in the yeast Saccharomyces cerevisiae. The mutant Tfa1 proteins fall into two classes. The first class causes thermosensitive growth due to single amino acid substitutions of the cysteines comprising the Zn-binding motif. The second mutant class is made up of proteins that are C-terminally truncated and that cause a cold-sensitive growth phenotype. The behavior of these mutants suggests that Tfa1p possesses at least two domains with genetically distinct functions. The mutations in the Zn-binding motif do not affect the mutant protein's stability at the nonpermissive temperature or its ability to associate with the small subunit of TFIIE. Our studies further determined that wild-type TFIIE can bind to single-stranded DNA in vitro. However, this property is unaffected in the mutant TFIIE complexes. Finally, we have demonstrated the biological importance of TFIIE in pol II-mediated transcription by depleting the Tfa1 protein from the cells and observing a concomitant decrease in total poly(A)+ mRNA.


2019 ◽  
Author(s):  
A. C. Rothchild ◽  
G. S. Olson ◽  
J. Nemeth ◽  
L. M. Amon ◽  
D. Mai ◽  
...  

AbstractAlveolar macrophages (AMs) are the first cells to be infected duringMycobacterium tuberculosis(Mtb) infection. Thus the AM response to infection is the first of many steps leading to initiation of the adaptive immune response, which is required for efficient control of infection. A hallmark of Mtb infection is the delay of the adaptive response, yet the mechanisms responsible for this delay are largely unknown. We developed a system to identify, sort and analyze Mtb-infected AMs from the lung within the first 10 days of infection. In contrast to what has been previously described usingin vitrosystems, we find that Mtb-infected AMs up-regulate a cell-protective antioxidant transcriptional signature that is dependent on the lung environment and not dependent on bacterial virulence. Computational approaches including pathway analysis and transcription factor binding motif enrichment analysis identify Nrf2 as a master regulator of the response of AMs to Mtb infection. Using knock-out mouse models, we demonstrate that Nrf2 drives the expression of the cell protective transcriptional program and impairs the ability of the host to control bacterial growth over the first 10 days of infection. Mtb-infected AMs exhibit a highly delayed pro-inflammatory response, and comparisons with uninfected AMs from the same infected animals demonstrate that inflammatory signals in the lung environment are blocked in the Mtb-infected cells. Thus, we have identified a novel lung-specific transcriptional response to Mtb infection that impedes AMs from responding rapidly to intracellular infection and thereby hinders the overall immune response.One Sentence SummaryIn response to Mtb infectionin vivo, alveolar macrophages fail to up-regulate the canonical pro-inflammatory innate response and instead induce an Nrf2-dependent cell protective transcriptional program, which in turn impairs the host’s control of bacterial growth.


Sign in / Sign up

Export Citation Format

Share Document