Evaluation and comparison of concrete constitutive models in numerical simulation of reinforced concrete slabs under blast load

2021 ◽  
pp. 204141962110489
Author(s):  
Hani Mahdavi Talaromi ◽  
Farhad Sakhaee

Numerical models have been used recently to analyze concrete structures subjected to high-impulsive loads. A material model that can well capture the mechanical behaviors is crucial to obtain reliable results. Present study, focused on reinforced concrete slab as a major load carrying element of the RC structures under blast loading. By performing several simulations in popular and powerful concrete constitutive models, including concrete damage R3, HJC, CSCM, and Winfrith the accuracy of these models was investigated. Maximum deflections have been compared with each other and expanded further to compare with experiments. Result showed all models have an acceptable accuracy in estimating maximum slab deflection. Concrete Damage R3 presented the highest accuracy. HJC has the second rank and CSCM and Winfrith have the third and the fourth places, respectively. HJC needed the minimum computation time. CSCM had minimum input parameters but includes maximum calculation time. Winfrith had the lowest accuracy, however this model presented very conservative results. Uniaxial compressive and tensile stress-strain curves showed that the models which presented higher values of strength, evaluated lower maximum values of deflection.

2007 ◽  
Vol 13 (4) ◽  
pp. 295-302 ◽  
Author(s):  
Darius Bačinskas ◽  
Gintaris Kaklauskas ◽  
Viktor Gribniak ◽  
Edgaras Geda

There are many buildings and civil engineering works under construction which are at risk of fire. The fire resistance analysis of reinforced concrete structures constitutes an important part in their design. However, the analysis of the behaviour of load‐bearing members under high temperature conditions is very complicated. Various factors that influence the behaviour of the members need to be taken into account. Analytical and computation methods have been developed in the field of reinforced concrete building exposed to high temperature or accidental fire. Unfortunately, such models are computationally too demanding and their application are limited even for a simply supported reinforced concrete members (beams, plates etc). In this paper, an attempt has been made to extend application of the Flexural model to stress and strain analysis of flexural reinforced concrete members subjected to high temperature. Constitutive models and key material parameters describing thermo‐mechanical behaviour of concrete and reinforcement are discussed. A powerful calculation technique based on layered approach is briefly described. A numerical example of application of present method for calculating of stresses, strains and curvatures of reinforced concrete slab is presented.


2012 ◽  
Vol 249-250 ◽  
pp. 1063-1068
Author(s):  
Qian Ma ◽  
Dan Wu ◽  
Xu Dong Shi ◽  
Xiu Gen Jiang

The influence of the structure parameters on the anti-impact performances of the reinforced concrete slab is studied in the article. The reinforced concrete model is established by using ANSYS 13.0/LS-DYNA and nonlinear finite element theory and the parameterized modeling is achieved. The results show that the increase of the thickness of the slab and the steel bar diameter result in the enhancement of impact resistant capability of the slab; a appropriate quantity of reinforcement is significant; Increasing the concrete strength has a distinct impact on the slab’s impact resistance when using relatively low strength concrete. However the influence becomes weak after the concrete strength comes to C60 and higher. The fruits are useful to the designing of reinforced concrete slabs.


2019 ◽  
Vol 969 ◽  
pp. 349-354 ◽  
Author(s):  
J. Chithra ◽  
Praveen Nagarajan ◽  
A.S. Sajith ◽  
R.A. Roshan

Nowadays finite element software is used for the design and analysis of reinforced concrete slabs. This paper intends to have a critical review based on a comparison study between the three design methods and to estimate the amount of reinforcement to be provided in each case. The three methods discussed are; the three-layer sandwich model (IRC 112-2011), Wood Armer method (EN1992-1-1:2004) and the conventional design method as per IS 456-2000. In the recently revised code for bridges IRC 112-2011, there is a recommendation to adopt three-layer sandwich model for the design of reinforced concrete slab. In this paper, a critical review of this method is done, and it is used for slabs subjected to uniformly distributed load. This method is illustrated by considering the design of rectangular slab subjected to uniformly distributed load. The results of this method are compared with the results obtained using Wood Armer method and using the moment coefficients suggested in IS 456-2000.


Author(s):  
Youmn Al Rawi ◽  
Yehya Temsah ◽  
Hassan Ghanem ◽  
Ali Jahami ◽  
Mohamad Elani

Many research studies have been conducted on the effect of impact loading on structures, and design procedures were proposed for reinforced concrete (RC) slabs; however the availability of these studies and procedures are limited for prestressed slabs. The proposed research will examine, using numerical analysis, the impact of rock fall on prestressed concrete slabs with equivalent moment capacity reinforced concrete slabs. It is expected that prestressed concrete slabs will have different behavior to resist impact loading compared with traditional reinforced concrete slabs. The thickness of the prestressed concrete slab will be 25cm whereas that of the reinforced concrete slab will be 30cm. The impact loading consists of 500Kg drop weight. The drop height will be 10m, 15m and 20m.The structural analysis is performed using a Finite Element program "ABAQUS". A comparison will be done between both slab types in terms of failure mode, damage, and deflection. It has been found that both slabs failed in punching. However, the RC slab performed better than the prestressed concrete slab with respect to the value of the deflection at mid-span, while both showed punching shear mode of failure.


Author(s):  
Shamsoon Fareed

Loads resulting from activities such as rock fall, heavy drop weights (for e.g. equipment's, heavy machines during installation), missile and aircraft interaction with slabs may results in loading intensity which have higher magnitude as compared to static loading. Based on the velocity of the impacting object at the time of contact, these activities may result in impact loading. Therefore, slabs designed should provide resistance to these accidental loading during their entire operational life. In this study, a dynamic non-linear finite element analyses were conducted to investigate the behavior of the reinforced concrete slabs subjected to high-mass low-velocity impacts. For this purpose, initially an already published impact test results were used to validate the numerical predictions. Following validation, a study was conducted to investigate the influence of the impact velocity on the behavior of the reinforced concrete slab. Based on the numerical investigation, it was found that the velocity of the impacting object has a significant influence on the behavior exhibited by slab under impact loading. Furthermore, it was also found that the behavior of slab under impact is both local and global. Local behavior is associated with the damage caused at the contact area of the slab and the impactor, whereas global behavior refers to the overall deformation of the slab when stress waves move away from the impact zone and travel towards the supports.


2014 ◽  
Vol 7 (6) ◽  
pp. 940-964
Author(s):  
M. V. A. Lima ◽  
J. M. F. Lima ◽  
P. R. L. Lima

This work presents a model to predict the flexural behavior of reinforced concrete slabs, combining the Mazars damage model for simulation of the loss of stiffness of the concrete during the cracking process and the Classical Theory of Laminates, to govern the bending of the structural element. A variational formulation based on the principle of virtual work was developed for the model, and then treated numerically according to the Finite Difference Energy Method, with the end result a program developed in Fortran. To validate the model thus proposed have been simulated with the program, some cases of slabs in flexure in the literature. The evaluation of the results obtained in this study demonstrated the capability of the model, in view of the good predictability of the behavior of slabs in flexure, sweeping the path of equilibrium to the rupture of the structural element. Besides the satisfactory prediction of the behavior observed as positive aspects of the model to its relative simplicity and reduced number of experimental parameters necessary for modeling.


2021 ◽  
Vol 50 (1) ◽  
pp. 227-238
Author(s):  
Yanuar Haryanto ◽  
Nanang Gunawan Wariyatno ◽  
Hsuan-Teh Hu ◽  
Ay Lie Han ◽  
Banu Ardi Hidayat

Reinforced concrete is perhaps the most widely used building material in the world. However, the materials used for reinforcement of concrete i.e. steel is quite expensive and scarcely available in the developing world. As a result, bamboo is considered to be a cheaper replacement with high tensile strength. This research investigated the structural behaviour of bamboo-reinforced concrete slabs used for footplate foundation subjected to concentrated load. For this purpose, four different reinforced concrete slab panels were developed and analyzed. The influence of replacing steel with bamboo for the reinforcement of concrete slabs on their structural behaviour was assessed by determining the load-deflection characteristics, the ultimate load, the stiffness, the ductility, the cracking pattern, and the energy absorption capacity. The results showed that in comparison to steel reinforced concrete slabs, the strength of 82% can be acquired by the bamboo reinforced slabs. Furthermore, ductility demonstrated by the two types of specimens was almost equivalent i.e. up to 93%. Those indicated that the structural behaviour demonstrated by bamboo reinforced slabs is quite comparable to that of steel reinforced concrete slabs. Therefore, bamboo can prove to be a promising substitute for steel in concrete reinforcement. Future studies may further examine this opportunity.


2018 ◽  
Vol 68 (2) ◽  
pp. 138 ◽  
Author(s):  
F. B. Mendonca ◽  
G. Urgessa ◽  
K. Iha ◽  
R. J. Rocha ◽  
J.A.F.F. Rocco

<p>Explosions emanating from terrorist attacks or military weapons cause damage to civilian and military facilities. Understanding the mechanical behaviour of reinforced concrete structures subjected to blast is of paramount importance for minimizing the possible blast damage. A full-scale experimental program consisting of six reinforced concrete slabs with compressive strengths of 60 MPa, 50 MPa and 40 MPa, measuring 1.0 m × 1.0 m × 0.08 m, and subjected to 2.7 kg of non-confined plastic bonded explosive, was conducted in blast test area of Science and Technology Aerospace Department (Brazilian Air Force). This paper compares experimentally measured peak displacement values with theoretical values. Theoretical analysis was carried out using single degree of freedom (SDOF) models. The comparison showed that SDOF analysis worked very well in predicting the reinforced concrete slab peak displacement against blast effects. Qualitative analysis after the experiments showed that the blast wave shape generated by the cylindrical explosive was not uniformly distributed on the slabs for the standoff distance of 0.927 m∕kg1/3.<br /><br /></p>


Fibers ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 68
Author(s):  
Abdulkhaliq A. Jaafer ◽  
Raid AL-Shadidi ◽  
Saba L. Kareem

The present experimental work investigates the applicability and performance of a new strengthening method for concrete slabs, intended to increase their punching resistance using combination layers of steel wire mesh with epoxy attached to the concrete slabs’ tension face. Six simply supported square reinforced concrete slab specimens were tested up to failure under a central concentrated load. The main parameters in the study are the concrete compressive strength (30 MPa and 65 MPa) and the configuration of a bundle externally fixed to the tension side of the tested slabs. The experimental results appeared to greatly enhance the performance of the specimens, as they were externally strengthenined under this new method. When compared to the control slabs, the punching load and stiffness of the strengthened slabs increased up to 28% and 21%, respectively.


2021 ◽  
Vol 9 (1) ◽  
pp. 65-71
Author(s):  
Muhammad Jawad Kadhim ◽  
Khalid K. Shadhan ◽  
Bilal Ismaeel Abd Al-Zahra

Abstract The flexural strength of slabs may be reduced due to accidents and environmental effects. This study focuses on the rehabilitation of the one-way reinforced concrete slab. Experimental works include five simply supported one-way reinforced concrete slabs with width, depth, and length of 400, 120, and 2200 mm, respectively. Different configurations of steel continuity between old and new concrete have been tested. Moreover, in the control specimen (steel is continued overall, the specimen and concrete are cast in one stage over the entire slab). In the other four specimens, the concrete is cast in two stages, the left and right parts representing the old concrete are cast first, and the middle part representing a new concrete is cast after that. In these four specimens, new steel is connected to old one by different configuration (original steel remain to continue, new steel connected to old one by weld, new steel connected to old one by making 90° hooks, and new steel bars is put inside bores using epoxy). After testing, the welding method of connecting new to old steel is the best one.


Sign in / Sign up

Export Citation Format

Share Document