scholarly journals The role of the renin–angiotensin system in regulating endometrial neovascularization during the peri-implantation period: literature review and preliminary data

2020 ◽  
Vol 11 ◽  
pp. 204201882092056 ◽  
Author(s):  
Ruofan Qi ◽  
Tin Chiu Li ◽  
Xiaoyan Chen

Background: Implantation is initiated when the blastocyst attaches to the endometrium during the peri-implantation period, and appropriate neovascularization is a prerequisite for the success of the subsequent process. The role of the renin–angiotensin system (RAS) in regulation of blood pressure and hydro-electrolyte balance has long been recognized, while its role in the peri-implantation endometrium remains unclear. This manuscript discusses endometrial RAS and its possible pathways in regulating endometrial angiogenesis and its influence on subsequent pregnancy outcomes. Methods: A comprehensive search of electronic databases was carried out to identify relevant published articles, and a literature review was then performed. Using immunohistochemistry, we also performed a pilot study to examine expression of angiotensin II receptors, including angiotensin II type 1 (AT1) receptor (AT1-R) and angiotensin II type 2 (AT2) receptor (AT2-R) in the human endometrium around the time of implantation. Results: The results of the pilot study showed expression of AT1-R and AT2-R in all endometrial compartments (luminal epithelium, glandular epithelium, stroma cells, and blood vessels), and altered expression was witnessed in women with recurrent miscarriage when compared with fertile control women from our preliminary result. Conclusion: Altered vasculature of the endometrium in the peri-implantation period is detrimental to implantation and may lead to recurrent miscarriage. Being an angiogenic mediators, endometrial RAS may play a role around the time of embryo implantation, affecting subsequent pregnancy outcomes.

1985 ◽  
Vol 248 (3) ◽  
pp. R371-R377 ◽  
Author(s):  
B. S. Huang ◽  
M. J. Kluger ◽  
R. L. Malvin

The thermoregulatory role of brain angiotensin II (ANG II) was tested by intracerebroventricular (IVT) infusion of ANG II or the converting enzyme inhibitor SQ 20881 (SQ) in 15 conscious sheep. Deep body temperature decreased 0.30 +/- 0.07 degree C (SE) during the 3-h period of IVT ANG II (25 ng/min) infusion (P less than 0.05) and increased 0.50 +/- 0.13 degree C during IVT SQ (1 microgram/min) infusion (P less than 0.01). To determine whether the rise in body temperature after IVT SQ infusion might be the result of a central renin-angiotensin system (RAS), SQ was infused IVT in five conscious sheep 20 h after bilateral nephrectomy. This resulted in a significant rise in body temperature of 0.28 +/- 0.05 degree C (P less than 0.05). When vasopressin antidiuretic hormone (ADH) was infused intravenously at the same time of IVT SQ infusion, the rise in temperature was depressed, but ADH did not lower the temperature below basal. IVT dopamine (20 micrograms/min) increased body temperature by 0.40 +/- 0.04 degree C (P less than 0.01), which was qualitatively similar to the result with IVT SQ. These data support the hypothesis that endogenous brain ANG II may play a role in thermoregulation. Furthermore, plasma ADH level, regulated in part by brain ANG II, is probably not the mediator of that thermoregulation. The similar effects of IVT dopamine and SQ on body temperature strengthen the hypothesis that dopamine may be involved in the central action of brain ANG II.


1981 ◽  
Vol 240 (1) ◽  
pp. R75-R80 ◽  
Author(s):  
M. C. Lee ◽  
T. N. Thrasher ◽  
D. J. Ramsay

The role of the renin-angiotensin system in drinking induced by water deprivation and caval ligation was assessed by infusion of saralasin into the lateral ventricles of rats. This technique was first validated by demonstrating its capability to specifically antagonize drinking to both systemic and central angiotensin II. However, neither the latency to drink nor the amount of water consumed following 24- or 30-h water deprivation was affected by saralasin. Furthermore, saralasin had no significant effect on the recovery of blood pressure or on the water intake following ligation of the abdominal vena cava. These observations suggest that the renin-angiotensin system alone does not play an essential role in the control of drinking following water deprivation or caval ligation in rats.


2005 ◽  
Vol 288 (4) ◽  
pp. F614-F625 ◽  
Author(s):  
Dinesh M. Shah

Preeclampsia is a hypertensive disorder unique to pregnancy with consistent involvement of the kidney. The renin-angiotensin system (RAS) has been implicated in the pathogenesis of preeclampsia. In the gravid state, in addition to the RAS in the kidney, there is a tissue-based RAS in the uteroplacental unit. Increased renin expression observed both in human preeclampsia and in a transgenic mouse model with a human preeclampsia-like syndrome supports the concept that activation of the uteroplacental RAS, with angiotensin II entering the systemic circulation, may mediate the pathogenesis of preeclampsia. A novel disease paradigm of the two-kidney one-clip (2K-1C) Goldblatt model is presented for preeclampsia, wherein the gravid uterus is the clipped “kidney” and the two maternal kidneys represent the unclipped kidney. Validation of the 2K-1C Goldblatt model analogy requires evidence of elevated angiotensin II in the peripheral circulation before vascular maladaptation in preeclampsia. Convincing evidence of the elevation of angiotensin II in preeclampsia does not exist despite the fact that much of vascular pathogenesis appears to be due to angiotensin type I (AT1) receptor activation. Vascular maladaptation with increased vasomotor tone, endothelial dysfunction, and increased sensitivity to angiotensin II and norepinephrine in manifest preeclampsia may be explained on the basis of angiotensin II-mediated mechanisms. Recently, novel angiotensin II-related biomolecular mechanisms have been described in preeclampsia. These include AT1and bradykinin B2receptor heterodimerization and the production of an autoantibody against AT1. Various organ systems with a predilection for involvement in preeclampsia are each a site of a tissue-based RAS. How angiotensin II-mediated mechanisms may explain the primary clinical-pathological features of preeclampsia is described. Future investigations are proposed to more precisely define the role of activation of the uteroplacental RAS in the mechanisms underlying preeclampsia.


1993 ◽  
Vol 265 (6) ◽  
pp. E860-E865 ◽  
Author(s):  
L. A. Cassis

The role of angiotensin II (ANG II) in increased sympathetic neuroeffector mechanisms observed in cold-induced thermogenesis of brown adipose tissue (BAT) was examined. Cold exposure (4 degrees C) for 7 days resulted in an increase in interscapular fat (ISF) ANG II content expressed per gram wet weight or per lobe of ISF, without concomitant changes in plasma components of the renin-angiotensin system. Additionally, in ISF slices preloaded with [3H]norepinephrine (NE), ANG II (10 nM) resulted in an increase (3-fold) in evoked 3H overflow from ISF slices from cold-exposed rats compared with ambient temperature controls. However, although basal 3H outflow was increased (2-fold) in ISF slices from cold-exposed rats, evoked 3H overflow was not different between ISF slices from cold-exposed and control rats. Specific neuronal uptake of [3H]NE in ISF slices from cold-exposed rats was decreased by 64%. Administration of the non-peptide AT1-receptor antagonist losartan to cold-exposed rats resulted in complete inhibition of ANG II-mediated presynaptic facilitation of evoked 3H overflow from ISF slices. However, losartan administration had no effect on cold-induced increases in ANG II content, protein content, and decreases in neuronal [3H]NE uptake in ISF. Results from these studies suggest that cold-induced thermogenesis of BAT results in alterations in presynaptic ANG II facilitation of NE release and defects in removal of NE from the synaptic cleft (neuronal uptake), both of which would enhance sympathetic nervous system-mediated thermogenesis. Furthermore, these results demonstrate a role for ANG II in enhanced sympathetic activity of cold-induced thermogenesis in BAT.


1996 ◽  
Vol 22 (4) ◽  
pp. 589-593 ◽  
Author(s):  
G. P. Vinson ◽  
R. Teja ◽  
M. M. Ho ◽  
J. P. Hinson ◽  
J. R. Puddefoot

1985 ◽  
Vol 108 (1) ◽  
pp. 98-103 ◽  
Author(s):  
Giuseppina Mazzocchi ◽  
Piera Rebuffat ◽  
Claudia Robba ◽  
Ludwig K. Malendowicz ◽  
Gastone G. Nussdorfer

Abstract. The trophic effects of chronic potassium loading on the rat zona glomerulosa were investigated by morphometric and radioimmunological methods. Potassium loading exerted a potent adrenoglomerulotrophic effect in saline treated control rats, but it was not able to reverse the captopril- and dexamethasone-induced atrophy of the zona glomerulosa. However, if the captopril/dexamethasone administered rats were given maintenance doses of angiotensin II and ACTH, potassium loading was found to exert a strong trophic action. The hypothesis is advanced that potassium loading requires the integrity of both the renin-angiotensin system and the hypothalamo-hypophyseal axis to exert its powerful direct stimulating effect on the growth and steroidogenic capacity of the rat zona glomerulosa.


Sign in / Sign up

Export Citation Format

Share Document