scholarly journals JNK2 regulates vascular remodeling in pulmonary hypertension

2018 ◽  
Vol 8 (3) ◽  
pp. 204589401877815
Author(s):  
Mita Das ◽  
W. Michael Zawada ◽  
James West ◽  
Kurt R. Stenmark

Pulmonary arterial (PA) wall modifications are key pathological features of pulmonary hypertension (PH). Although such abnormalities correlate with heightened phosphorylation of c-Jun N-terminal kinases 1/2 (JNK1/2) in a rat model of PH, the contribution of specific JNK isoforms to the pathophysiology of PH is unknown. Hence, we hypothesized that activation of either one, or both JNK isoforms regulates PA remodeling in PH. We detected increased JNK1/2 phosphorylation in the thickened vessels of PH patients’ lungs compared to that in lungs of healthy individuals. JNK1/2 phosphorylation paralleled a marked reduction in MAP kinase phosphatase 1 (JNK dephosphorylator) expression in patients’ lungs. Association of JNK1/2 activation with vascular modification was confirmed in the calf model of severe hypoxia-induced PH. To ascertain the role of each JNK isoform in pathophysiology of PH, wild-type (WT), JNK1 null (JNK1-/-), and JNK2 null (JNK2-/-) mice were exposed to chronic hypoxia (10% O2 for six weeks) to develop PH. In hypoxic WT lungs, an increase in JNK1/2 phosphorylation was associated with PH-like pathology. Hallmarks of PH pathophysiology, i.e. excessive accumulation of extracellular matrix and vessel muscularization with medial wall thickening, was also detected in hypoxic JNK1-/- lungs, but not in hypoxia-exposed JNK2-/- lungs. However, hypoxia-induced increases in right ventricular systolic pressure (RVSP) and in right ventricular hypertrophy (RVH) were similar in all three genotypes. Our findings suggest that JNK2 participates in PA remodeling (but likely not in vasoconstriction) in murine hypoxic PH and that modulating JNK2 actions might quell vascular abnormalities and limit the course of PH.

2015 ◽  
Vol 309 (10) ◽  
pp. L1164-L1173 ◽  
Author(s):  
Michiel Alexander de Raaf ◽  
Yvet Kroeze ◽  
Anthonieke Middelman ◽  
Frances S. de Man ◽  
Helma de Jong ◽  
...  

Increased serotonin serum levels have been proposed to play a key role in pulmonary arterial hypertension (PAH) by regulating vessel tone and vascular smooth muscle cell proliferation. An intact serotonin system, which critically depends on a normal function of the serotonin transporter (SERT), is required for the development of experimental pulmonary hypertension in rodents exposed to hypoxia or monocrotaline. While these animal models resemble human PAH only with respect to vascular media remodeling, we hypothesized that SERT is likewise required for the presence of lumen-obliterating intima remodeling, a hallmark of human PAH reproduced in the Sugen hypoxia (SuHx) rat model of severe angioproliferative pulmonary hypertension. Therefore, SERT wild-type (WT) and knockout (KO) rats were exposed to the SuHx protocol. SERT KO rats, while completely lacking SERT, were hemodynamically indistinguishable from WT rats. After exposure to SuHx, similar degrees of severe angioproliferative pulmonary hypertension and right ventricular hypertrophy developed in WT and KO rats (right ventricular systolic pressure 60 vs. 55 mmHg, intima thickness 38 vs. 30%, respectively). In conclusion, despite its implicated importance in PAH, SERT does not play an essential role in the pathogenesis of severe angioobliterative pulmonary hypertension in rats exposed to SuHx.


2021 ◽  
pp. 1-15
Author(s):  
Lars K. Markvardsen ◽  
Lene D. Sønderskov ◽  
Christine Wandall-Frostholm ◽  
Estéfano Pinilla ◽  
Judit Prat-Duran ◽  
...  

<b><i>Introduction:</i></b> Pulmonary hypertension is characterized by vasoconstriction and remodeling of pulmonary arteries, leading to right ventricular hypertrophy and failure. We have previously found upregulation of transglutaminase 2 (TG2) in the right ventricle of chronic hypoxic rats. The hypothesis of the present study was that treatment with the transglutaminase inhibitor, cystamine, would inhibit the development of pulmonary arterial remodeling, pulmonary hypertension, and right ventricular hypertrophy. <b><i>Methods:</i></b> Effect of cystamine on transamidase activity was investigated in tissue homogenates. Wistar rats were exposed to chronic hypoxia and treated with vehicle, cystamine (40 mg/kg/day in mini-osmotic pumps), sildenafil (25 mg/kg/day), or the combination for 2 weeks. <b><i>Results:</i></b> Cystamine concentration-dependently inhibited TG2 transamidase activity in liver and lung homogenates. In contrast to cystamine, sildenafil reduced right ventricular systolic pressure and hypertrophy and decreased pulmonary vascular resistance and muscularization in chronic hypoxic rats. Fibrosis in the lung tissue decreased in chronic hypoxic rats treated with cystamine. TG2 expression was similar in the right ventricle and lung tissue of drug and vehicle-treated hypoxic rats. <b><i>Discussion/Conclusions:</i></b> Cystamine inhibited TG2 transamidase activity, but cystamine failed to prevent pulmonary hypertension, right ventricular hypertrophy, and pulmonary arterial muscularization in the chronic hypoxic rat.


2020 ◽  
Vol 10 (4) ◽  
pp. 204589402093984
Author(s):  
Ailing Li ◽  
Zhongkai Zhu ◽  
Yangke He ◽  
Qian Dong ◽  
Dianyong Tang ◽  
...  

Pulmonary arterial hypertension is a progressive, malignant heart disease, characterized by pulmonary arteriole remodeling and increased pulmonary vascular resistance, which eventually leads to right heart failure. This study sought to evaluate the effects of a novel long-acting phospdiesterase-5 inhibitor, namely DDCI-01, as an early intervention for monocrotaline-induced pulmonary hypertensive rats. To establish this model, 50 mg/kg of monocrotaline was intraperitoneally injected into rats. At Day 7 after monocrotaline injection, two doses of DDCI-01 (3 or 9 mg/kg/day) or tadalafil (at 3 or 9 mg/kg/day) were intragastrically administered. The rats were anesthetized with pentobarbital for hemodynamic and echocardiographic measurements, at Day 21 after monocrotaline injection. Compared to the monocrotaline group, DDCI-01 at 3 and 9 mg/kg/day (P) reduced the mean pulmonary arterial pressure (mPAP), right ventricular systolic pressure, right ventricular transverse diameter, pulmonary arterial medial wall thickness (WT%), and right ventricle hypertrophy. However, no significant difference in the indices mentioned as above was found between DDCI-01 (3 mg/kg/day) and tadalafil (3 mg/kg/day). In addition, DDCI-01 at 9 mg/kg/day resulted in lower mPAP and WT%, as well as higher cyclic guanosine monophosphate levels in the lung and plasma compared with the same dose of tadalafil (9 mg/kg/day) (all P < 0.05). These findings suggested that DDCI-01 improved monocrotaline-induced pulmonary hypertension in rats, and a dose of DDCI-01 of 9 mg/kg/day might be more effective than the same dose of tadalafil in monocrotaline-induced pulmonary hypertension in rats.


Author(s):  
Rajamma Mathew ◽  
Jing Huang ◽  
Sanda Iacobas ◽  
Dumitru Iacobas

Pulmonary hypertension (PH) is a serious disorder with high morbidity and mortality rate. We analyzed the right ventricular systolic pressure (RVSP), right ventricular hypertrophy (RVH), lung histology and transcriptomes of six weeks old male rats with PH induced by: 1) hypoxia (HO), 2) administration of monocrotaline (CM) or 3) administration of monocrotaline and exposure to hypoxia (HM). The results in PH rats were compared to those in control rats (CO). After four weeks exposure, increased RVSP and RVH, pulmonary arterial wall thickening, and alteration of the lung transcriptome were observed in all PH groups. The HM group exhibited the largest alterations and also neointimal lesions and obliteration of lumen in small arteries. We found that the PH increased the expression of caveolin1, matrix metallopeptidase 2 and numerous inflammatory and cell proliferation genes. The cell-cycle, vascular smooth muscle contraction and the oxidative phosphorylation pathways, as well as their interplay were largely perturbed. Our results also suggest that the up-regulated Rhoa (ras homolog family member A) mediates its action through expression coordination with several ATPases. The upregulation of antioxidant genes and the extensive mitochondrial damage observed especially in HM group, indicate metabolic shift towards aerobic glycolysis.


Genes ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 126 ◽  
Author(s):  
Rajamma Mathew ◽  
Jing Huang ◽  
Sanda Iacobas ◽  
Dumitru A. Iacobas

Pulmonary hypertension (PH) is a serious disorder with high morbidity and mortality rate. We analyzed the right-ventricular systolic pressure (RVSP), right-ventricular hypertrophy (RVH), lung histology, and transcriptomes of six-week-old male rats with PH induced by (1) hypoxia (HO), (2) administration of monocrotaline (CM), or (3) administration of monocrotaline and exposure to hypoxia (HM). The results in PH rats were compared to those in control rats (CO). After four weeks exposure, increased RVSP and RVH, pulmonary arterial wall thickening, and alteration of the lung transcriptome were observed in all PH groups. The HM group exhibited the largest alterations, as well as neointimal lesions and obliteration of the lumen in small arteries. We found that PH increased the expression of caveolin1, matrix metallopeptidase 2, and numerous inflammatory and cell proliferation genes. The cell cycle, vascular smooth muscle contraction, and oxidative phosphorylation pathways, as well as their interplay, were largely perturbed. Our results also suggest that the upregulated Rhoa (Ras homolog family member A) mediates its action through expression coordination with several ATPases. The upregulation of antioxidant genes and the extensive mitochondrial damage observed, especially in the HM group, indicate metabolic shift toward aerobic glycolysis.


2002 ◽  
Vol 283 (5) ◽  
pp. H2021-H2028 ◽  
Author(s):  
Yasuhiro Ikeda ◽  
Yoshikazu Yonemitsu ◽  
Chu Kataoka ◽  
Shiro Kitamoto ◽  
Terutoshi Yamaoka ◽  
...  

Monocyte/macrophage chemoattractant protein-1 (MCP-1), a potent chemoattractant chemokine and an activator for mononuclear cells, may play a role in the initiation and/or progression of pulmonary hypertension (PH). To determine whether blockade of a systemic MCP-1 signal pathway in vivo may prevent PH, we intramuscularly transduced a naked plasmid encoding a 7-NH2terminus-deleted dominant negative inhibitor of the MCP-1 (7ND MCP-1) gene in monocrotaline-induced PH. We also simultaneously gave a duplicate transfection at 2-wk intervals or skeletal muscle-directed in vivo electroporation (EP) to evaluate whether a longer or higher expression might be more effective. The intramuscular reporter gene expression was enhanced 10 times over that by EP than by simple injection, and a significant 7ND MCP-1 protein in plasma was detected only in the EP group. 7ND MCP-1 gene transfer significantly inhibited the progression of MCT-induced PH as evaluated by right ventricular systolic pressure, right ventricular hypertrophy, medial hypertrophy of pulumonary arterioles, and mononuclear cell infiltration into the lung. Differential effects of longer or higher transgene expression were not apparent. Although the in vivo kinetics of 7ND MCP-1 gene therapy should be studied further, these encouraging results suggest that an anti-inflammatory strategy via blockade of the MCP-1 signal pathway may be an alternative approach to treat subjects with PH.


Circulation ◽  
2018 ◽  
Vol 138 (Suppl_1) ◽  
Author(s):  
Francois Potus ◽  
Boucherat Olivier ◽  
Provencher Steeve ◽  
Bonnet Sébastien

Introduction: Pulmonary arterial hypertension (PAH) is a lethal vasculopathy histologically associated with remodeling of distal pulmonary arteries and right ventricular failure that is drug-induced in approximately 10% of cases. Recently, PAH induced by chemotherapeutic agents such as RTK inhibitors (e.g. dasatinib) has been described. Crizotinib is a new MET inhibitor increasingly used for the treatment of ALK-positive non-small cell lung carcinoma. Interestingly, crizotinib has been shown to induce endothelial cells (EC) dysfunction (e.g. inhibition of EC survival and angiogenesis) and is symptomatically associated with dyspnea and peripheral oedema in many patients, which are cardinal symptoms of PAH. We thus hypothesized that chronic administration of crizotinib exacerbates PAH. Material and results: We observed a significant increase of mortality rate in PAH rats (Sugen/hypoxia model) treated with daily oral administration of crizotinib (100mg/kg/d for 2 weeks) compared to rats treated with vehicle (6/group; p<0.05). Furthermore, we demonstrated that crizotinib treatment was associated with increases in right ventricular systolic pressure, mean pulmonary arterial pressure and pulmonary vasculature resistance; and decreases in cardiac output and stroke volume (right heart catheterizations in closed chest) compared to vehicle-treated rats with Sugen-induced PAH (4 PAH+crizotinib; 6 PAH+vehicle, 5 PAH and 3 control rats; p<0.05). Histologically, crizotinib administration significantly increased pulmonary arteries wall thickness as well as right ventricular fibrosis (p<0.05). Finally, crizotinib increased macrophage accumulation and size within the lungs of PAH rats (p<0.05). Conclusion: We documented for the first time that crizotinib treatment markedly increases vascular remodeling and macrophage activation with concomitantly marked PAH exacerbation in Sugen rats. This study could have major clinical relevance in the management of patients treated with crizotinib.


2020 ◽  
Vol 9 (24) ◽  
Author(s):  
Rui Si ◽  
Qian Zhang ◽  
Jody Tori O. Cabrera ◽  
Qiuyu Zheng ◽  
Atsumi Tsuji‐Hosokawa ◽  
...  

Background Abnormal endothelial function in the lungs is implicated in the development of pulmonary hypertension; however, there is little information about the difference of endothelial function between small distal pulmonary artery (PA) and large proximal PA and their contribution to the development of pulmonary hypertension. Herein, we investigate endothelium‐dependent relaxation in different orders of PAs and examine the molecular mechanisms by which chronic hypoxia attenuates endothelium‐dependent pulmonary vasodilation, leading to pulmonary hypertension. Methods and Results Endothelium‐dependent relaxation in large proximal PAs (second order) was primarily caused by releasing NO from the endothelium, whereas endothelium‐dependent hyperpolarization (EDH)–mediated vasodilation was prominent in small distal PAs (fourth–fifth order). Chronic hypoxia abolished EDH‐mediated relaxation in small distal PAs without affecting smooth muscle–dependent relaxation. RNA‐sequencing data revealed that, among genes related to EDH, the levels of Cx37 , Cx40 , Cx43 , and IK were altered in mouse pulmonary endothelial cells isolated from chronically hypoxic mice in comparison to mouse pulmonary endothelial cells from normoxic control mice. The protein levels were significantly lower for connexin 40 (Cx40) and higher for connexin 37 in mouse pulmonary endothelial cells from hypoxic mice than normoxic mice. Cx40 knockout mice exhibited significant attenuation of EDH‐mediated relaxation and marked increase in right ventricular systolic pressure. Interestingly, chronic hypoxia led to a further increase in right ventricular systolic pressure in Cx40 knockout mice without altering EDH‐mediated relaxation. Furthermore, overexpression of Cx40 significantly decreased right ventricular systolic pressure in chronically hypoxic mice. Conclusions These data suggest that chronic hypoxia‐induced downregulation of endothelial Cx40 results in impaired EDH‐mediated relaxation in small distal PAs and contributes to the development of pulmonary hypertension.


1993 ◽  
Vol 75 (4) ◽  
pp. 1615-1623 ◽  
Author(s):  
J. R. Klinger ◽  
R. D. Petit ◽  
R. R. Warburton ◽  
D. S. Wrenn ◽  
F. Arnal ◽  
...  

Neutral endopeptidase (NEP) inhibition is thought to blunt hypoxic pulmonary hypertension by reducing atrial natriuretic peptide (ANP) metabolism, but this hypothesis has not been confirmed. We measured NEP activity, guanosine 3',5'-cyclic monophosphate (cGMP) production, plasma ANP levels, and cardiac ANP synthesis in rats given an orally active NEP inhibitor (SCH-34826) during 3 wk of hypoxia. Under normoxic conditions, SCH-34826 had no effect on plasma ANP levels but reduced pulmonary and renal NEP activity by 50% and increased urinary cGMP levels (60 +/- 6 vs. 22 +/- 4 pg/mg creatinine; P < 0.05). Under hypoxic conditions, SCH-34826-treated rats had lower plasma ANP levels (1,259 +/- 361 vs. 2,101 +/- 278 pg/ml; P < 0.05), lower right ventricular systolic pressure (53 +/- 5 vs. 73 +/- 2 mmHg; P < 0.05), lower right ventricle weight-to-left ventricle+septum weight ratio (0.47 +/- 0.04 vs. 0.53 +/- 0.03; P < 0.05), and less muscularization and percent medial wall thickness of peripheral pulmonary arteries (22 +/- 5 vs. 45 +/- 8% and 17 +/- 1 vs. 25 +/- 1%, respectively; P < 0.05 for all values) than did rats treated with vehicle alone. These values were not affected by SCH-34826 under normoxic conditions. SCH-34826 decreased right ventricular ANP tissue levels in hypoxic rats (27 +/- 10 vs. 8 +/- 1 ng/mg protein; P < 0.05) but did not affect steady-state ANP mRNA levels. We conclude that NEP inhibition blunts pulmonary hypertension without increasing plasma ANP levels.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document