scholarly journals HINDLIMB MUSCLE FIBER POPULATIONS OF FIVE MAMMALS

1973 ◽  
Vol 21 (1) ◽  
pp. 51-55 ◽  
Author(s):  
M. A. ARIANO ◽  
V. R. EDGERTON ◽  
R. B. ARMSTRONG

The fiber type profiles of hindlimb muscles in the Hartley guinea pig, Sprague-Dawley rat, cat, Galago senegalensis (lesser bushbaby) and Nycticebus coucang (slow loris) were estimated histochemically. Fibers were classified as fast oxidative glycolytic, fast glycolytic or slow oxidative according to their myosin adenosine triphosphatase, α-glycerophosphate dehydrogenase and reduced nicotinamide adenine dinucleotide diaphorase activities. It was found that the soleus and vastus intermedius muscles had the highest proportion of slow oxidative fibers in all five species, demonstrating the constancy of muscle fiber profiles dependent upon anatomical position and functional utilization. The tensor fascia latae and white vastus lateralis of the guinea pig were mostly fast glycolytic, while the red vastus lateralis of the guinea pig consisted of predominantly fast oxidative glycolytic fibers. The majority of muscles investigated in these five mammals were heterogeneous, having a wide range of percentages of the three fiber types.

1996 ◽  
Vol 80 (3) ◽  
pp. 1061-1064 ◽  
Author(s):  
D. Constantin-Teodosiu ◽  
S. Howell ◽  
P. L. Greenhaff

The effect of prolonged exhaustive exercise on free carnitine and acetylcarnitine concentrations in mixed-fiber skeletal muscle and in type I and II muscle fibers was investigated in humans. Needle biopsy samples were obtained from the vastus lateralis of six subjects immediately after exhaustive one-legged cycling at approximately 75% of maximal O2 uptake from both the exercised and nonexercised (control) legs. In the resting (control) leg, there was no difference in the free carnitine concentration between type I and II fibers (20.36 +/- 1.25 and 20.51 +/- 1.16 mmol/kg dry muscle, respectively) despite the greater potential for fat oxidation in type I fibers. However, the acetylcarnitine concentration was slightly greater in type I fibers (P < 0.01). During exercise, acetylcarnitine accumulation occurred in both muscle fiber types, but accumulation was greatest in type I fibers (P < 0.005). Correspondingly, the concentration of free carnitine was significantly lower in type I fibers at the end of exercise (P < 0.001). The sum of free carnitine and acetylcarnitine concentrations in type I and II fibers at rest was similar and was unchanged by exercise. In conclusion, the findings of the present study support the suggestion that carnitine buffers excess acetyl group formation during exercise and that this occurs in both type I and II fibers. However, the greater accumulation of acetylcarnitine in type I fibers during prolonged exercise probably reflects the greater mitochondrial content of this fiber type.


1985 ◽  
Vol 59 (6) ◽  
pp. 1716-1720 ◽  
Author(s):  
P. A. Tesch ◽  
J. Karlsson

Tissue samples were obtained from vastus lateralis and deltoid muscles of physical education students (n = 12), Greco-Roman wrestlers (n = 8), flat-water kayakers (n = 9), middle- and long-distance runners (n = 9), and olympic weight and power lifters (n = 7). Histochemical stainings for myofibrillar adenosinetriphosphatase and NADH-tetrazolium reductase were applied to assess the relative distribution of fast-twitch and slow-twitch (ST) muscle fiber types and fiber size. The %ST was not different in the vastus (mean SD 48 +/- 14) and deltoid (56 +/- 13) muscles. The %ST was higher (P less than 0.001), however, in the deltoid compared with vastus muscle of kayakers. This pattern was reversed in runners (P less than 0.001). The %ST of the vastus was higher (P less than 0.001) in runners than in any of the other groups. The %ST of the deltoid muscle was higher in kayakers than in students, runners (P less than 0.001), and lifters (P less than 0.05). The mean fiber area and the area of ST fibers were greater (P less than 0.01) in the vastus than the deltoid muscle. Our data show a difference in fiber type distribution between the trained and nontrained muscles of endurance athletes. This pattern may reflect the adaptive response to long-term endurance training.


1979 ◽  
Vol 47 (2) ◽  
pp. 388-392 ◽  
Author(s):  
R. J. Gregor ◽  
V. R. Edgerton ◽  
J. J. Perrine ◽  
D. S. Campion ◽  
C. DeBus

The relationship between the predominance of fast and slow muscle fibers of the vastus lateralis and “in vivo” torque velocity properties in 22 female athletes was studied. Fiber types were classified according to the histochemical myofibrillar adenosine triphosphatase technique at a basic pH. Maximal extensor troques were recorded at 30 degrees from full extension at four selected velocities. While results confirm earlier reports on muscle fiber type and performance, an additional finding was that as knee extension velocities increased from 0 to 95 degrees/s angle specific extensor torque production did not decline as seen in in vitro muscle preparations. The difference in extensor torque between 0 and 96 degrees/s appeared far more critical than the differences observed between 96 and 288 degrees/s. Significant differences in torque were seen at 96, 192, and 288 degrees/s in thos with greater than 50% and less than 50% slow-twitch fibers. When expressed per kilogram of body weight the subjects with greater than 50% fast-twitch fiber produced the greatest torque at 192 degrees/s. These results suggest that the velocity at which torque begins to decline in vivo is related to the proportion of slow-twitch fibers in the vastus lateralismuscle.


1999 ◽  
Vol 276 (2) ◽  
pp. R591-R596 ◽  
Author(s):  
H. Green ◽  
C. Goreham ◽  
J. Ouyang ◽  
M. Ball-Burnett ◽  
D. Ranney

To examine the hypothesis that increases in fiber cross-sectional area mediated by high-resistance training (HRT) would result in a decrease in fiber capillarization and oxidative potential, regardless of fiber type, we studied six untrained males (maximum oxygen consumption, 45.6 ± 2.3 ml ⋅ kg−1 ⋅ min−1; mean ± SE) participating in a 12-wk program designed to produce a progressive hypertrophy of the quadriceps muscle. The training sessions, which were conducted 3 times/wk, consisted of three sets of three exercises, each performed for 6–8 repetitions maximum (RM). Measurements of fiber-type distribution obtained from tissue extracted from the vastus lateralis at 0, 4, 7, and 12 wk indicated reductions ( P < 0.05) in type IIB fibers (15.1 ± 2.1% vs. 7.2 ± 1.3%) by 4 wk in the absence of changes in the other fiber types (types I, IIA, and IIAB). Training culminated in a 17% increase ( P < 0.05) in cross-sectional area by 12 wk with initial increases observed at 4 wk. The increase was independent of fiber type-specific changes. The number of capillaries in contact with each fiber type increased by 12 wk, whereas capillary contacts-to-fiber area ratios remained unchanged. In a defined cross-sectional field, HRT also increased the capillaries per fiber at 12 wk. Training failed to alter cellular oxidative potential, as measured by succinic dehydrogenase (SDH) activity, regardless of fiber type and training duration. It is concluded that modest hypertrophy induced by HRT does not compromise cellular tissue capillarization and oxidative potential regardless of fiber type.


1983 ◽  
Vol 245 (2) ◽  
pp. H265-H275 ◽  
Author(s):  
B. G. Mackie ◽  
R. L. Terjung

Blood flow to fast-twitch red (FTR), fast-twitch white (FTW), and slow-twitch red (STR) muscle fiber sections of the gastrocnemius-plantaris-soleus muscle group was determined using 15 +/- 3-microns microspheres during in situ stimulation in pentobarbital-anesthetized rats. Steady-state blood flows were assessed during the 10th min of contraction using twitch (0.1, 0.5, 1, 3, and 5 Hz) and tetanic (7.5, 15, 30, 60, and 120/min) stimulation conditions. In addition, an earlier blood flow determination was begun at 3 min (twitch series) or at 30 s (tetanic series) of stimulation. Blood flow was highest in the FTR (220-240 ml X min-1 X 100 g-1), intermediate in the STR (140), and lowest in the FTW (70-80) section during tetanic contraction conditions estimated to coincide with the peak aerobic function of each fiber type. These blood flows are fairly proportional to the differences in oxidative capacity among fiber types. Further, their absolute values are similar to those predicted from the relationship between blood flow and oxidative capacity found by others for dog and cat muscles. During low-frequency contraction conditions, initial blood flow to the FTR and STR sections were excessively high and not dependent on contraction frequency. However, blood flows subsequently decreased to values in keeping with the relative energy demands. In contrast, FTW muscle did not exhibit this time-dependent relative hyperemia. Thus, besides the obvious quantitative differences between skeletal muscle fiber types, there are qualitative differences in blood flow response during contractions. Our findings establish that, based on fiber type composition, a heterogeneity in blood flow distribution can occur within a whole muscle during contraction.


1997 ◽  
Vol 22 (4) ◽  
pp. 307-327 ◽  
Author(s):  
Robert S. Staron

This brief review attempts to summarize a number of studies on the delineation, development, and distribution of human skeletal muscle fiber types. A total of seven fiber types can be identified in human limb and trunk musculature based on the pH stability/ability of myofibrillar adenosine triphosphatase (mATPase). For most human muscles, mATPase-based fiber types correlate with the myosin heavy chain (MHC) content. Thus, each histochemically identified fiber has a specific MHC profile. Although this categorization is useful, it must be realized that muscle fibers are highly adaptable and that innumerable fiber type transients exist. Also, some muscles contain specific MHC isoforms and/or combinations that do not permit routine mATPase-based fiber typing. Although the major populations of fast and slow are, for the most part, established shortly after birth, subtle alterations take place throughout life. These changes appear to relate to alterations in activity and/or hormonal levels, and perhaps later in life, total fiber number. Because large variations in fiber type distribution can be found within a muscle and between individuals, interpretation of data gathered from human muscle is often difficult. Key words: aging, myosin heavy chains, myogenesis, myofibrillar adenosine triphosphate


2012 ◽  
Vol 22 (4) ◽  
pp. 292-303 ◽  
Author(s):  
Ildus I. Ahmetov ◽  
Olga L. Vinogradova ◽  
Alun G. Williams

The ability to perform aerobic or anaerobic exercise varies widely among individuals, partially depending on their muscle-fiber composition. Variability in the proportion of skeletal-muscle fiber types may also explain marked differences in aspects of certain chronic disease states including obesity, insulin resistance, and hypertension. In untrained individuals, the proportion of slow-twitch (Type I) fibers in the vastus lateralis muscle is typically around 50% (range 5–90%), and it is unusual for them to undergo conversion to fast-twitch fibers. It has been suggested that the genetic component for the observed variability in the proportion of Type I fibers in human muscles is on the order of 40–50%, indicating that muscle fiber-type composition is determined by both genotype and environment. This article briefly reviews current progress in the understanding of genetic determinism of fiber-type proportion in human skeletal muscle. Several polymorphisms of genes involved in the calcineurin–NFAT pathway, mitochondrial biogenesis, glucose and lipid metabolism, cytoskeletal function, hypoxia and angiogenesis, and circulatory homeostasis have been associated with fiber-type composition. As muscle is a major contributor to metabolism and physical strength and can readily adapt, it is not surprising that many of these gene variants have been associated with physical performance and athlete status, as well as metabolic and cardiovascular diseases. Genetic variants associated with fiber-type proportions have important implications for our understanding of muscle function in both health and disease.


1987 ◽  
Vol 62 (6) ◽  
pp. 2348-2357 ◽  
Author(s):  
R. R. Roy ◽  
M. A. Bello ◽  
P. Bouissou ◽  
V. R. Edgerton

Hindlimb suspension (HS) results in whole muscle atrophic and metabolic changes that vary in magnitude in different hindlimb muscles. The present study was designed to investigate these effects in single fibers. Fiber type and size and the activities of two metabolic marker enzymes were determined in a deep (close to the bone) and a superficial (away from the bone) region of the medial gastrocnemius (MG) and the tibialis anterior (TA) of control (CON) and 28-day HS adult female rats. Fibers were classified as dark or light adenosinetriphosphatase (ATPase) based on their qualitative staining reaction for myosin ATPase following alkaline preincubation. Fiber area and succinate dehydrogenase (SDH) and alpha-glycerophosphate dehydrogenase (GPD) activities were determined in tissue sections by use of an image analysis system. After 28 days of HS, the mean body weights of the CON and HS were similar. MG atrophied 28%, whereas TA weight was maintained in the HS. Both dark and light ATPase fibers in the deep region of the MG had smaller cross-sectional areas following HS, with the atrophic response being approximately twice as great in the light ATPase fibers. No significant changes in fiber type composition in either muscle or in fiber sizes in the superficial region of the MG or in either region of the TA were observed. Mean SDH activities of both fiber types were significantly lower in the MG and TA following HS. In contrast, mean GPD activities were either increased or maintained in light and dark ATPase fibers of both muscles in HS. Changes in SDH and GPD activity could not be directly linked to changes in fiber cross-sectional area. In summary, these data suggest an independence of the mechanisms determining muscle fiber size and metabolic adaptations associated with HS.


1996 ◽  
Vol 81 (1) ◽  
pp. 152-155 ◽  
Author(s):  
Y. Ohira ◽  
W. Yasui ◽  
F. Kariya ◽  
T. Tanaka ◽  
I. Kitajima ◽  
...  

Effects of 14 days of spaceflight on beta-adrenoceptor (beta-AR), mitochondrial enzyme activities, and fiber type composition were studied in plantaris muscles of male adult Sprague-Dawley rats. The beta-AR was analyzed in cross sections by quantitative autoradiography. The maximum binding capacity (Bmax) of beta-AR was significantly lowered (approximately 29%) after flight, but the recovery was not completed within 9 days in 1-G environment. Because the dissociation constant remained unchanged, it is suggested that the changes in the Bmax were caused by the alteration of receptor number. The activities of succinate dehydrogenase (SDH) measured in whole homogenates were subnormal (approximately -24%) in muscles sampled approximately 5 h after flight but they were normalized during 9 days of recovery. The percent composition of fiber types and beta-hydroxyacyl CoA dehydrogenase (HAD) activity did not change significantly due to spaceflight. It is suggested that the spaceflight-induced decrease of the Bmax of beta-AR in plantaris was accompanied by a lowered activity of a mitochondrial inner-membrane enzyme SDH but not a matrix enzyme HAD.


1990 ◽  
Vol 68 (4) ◽  
pp. 1176-1181 ◽  
Author(s):  
M. B. Solomon ◽  
R. G. Campbell ◽  
N. C. Steele

Abstract Thirty-seven pigs with an initial live weight of 60 kg were used to investigate the effects of daily exogenous porcine somatotropin (pST) administration at two dose levels (0 and 100 µg·kg−1·d−1) for a 31-d period on muscle fiber characteristics and meat tenderness of boars, gilts and barrows. Excipient boars and gilts had more αW and fewer αR fibers than did those receiving pST. The percentage of muscle fiber type for barrows was not affected by pST treatment. The administration of pST resulted in an increase in muscle fiber size for all three fiber types in all three sexes, but these changes were of greater magnitude in barrows (31.8%) and gilts (27.8%) than in boars (9.3%). Somatotropin negated the intrinsic sex effect differences in fiber area of the pigs. There was no difference in tenderness among excipient boars, barrows and gilts; however, with the inclusion of pST, shear force decreased in boars and gilts and increased in barrows. A high proportion of the pST-treated pigs contained giant fibers in the longissimus muscle. Furthermore, a small proportion of the pST-treated pigs exhibited pale, soft, exudative muscle. Whether the giant fiber anomalies occurred through increased muscle activity or from fibers undergoing degenerative changes was not determined.


Sign in / Sign up

Export Citation Format

Share Document