Magneto-hydrodynamic Blasius flow and heat transfer from a flat plate in the presence of suspended carbon nanofluids

Author(s):  
Mahantesh M Nandeppanavar ◽  
Rama Subba Reddy Gorla ◽  
S Shakunthala

In this article, we have discussed the effect of external magnetic field and other governing parameters on the flow and heat transfer in the presence of suspended carbon nanotubes over a flat plate. The governing equations of flow and heat transfer are derived from the Navier–Stokes and Prandtl boundary layer concept. The derived governing equations of flow and energy are non-linear partial differential equation, and these equations are converted into non-linear ordinary differential equations with corresponding boundary conditions using some suitable similarity transformations and are solved numerically using fourth-order Runge–Kutta method with efficient shooting technique. Effects of governing parameters on flow and heat transfer are shown through various graphs and explained with physical interpretation in detail. This study has applications in glass-fiber production and technology. On observing the results of this study, we can conclude that external magnetic field shows opposite behaviors on velocity and temperature and it enhances the rate of heat transfer.

2021 ◽  
Vol 25 (Spec. issue 2) ◽  
pp. 441-448
Author(s):  
Azeem Shahzad ◽  
Bushra Habib ◽  
Muhammad Nadeem ◽  
Muhammad Kamran ◽  
Hijaz Ahma ◽  
...  

In this framework, the boundary-layer mass and heat flow in a liquid film over an unsteady stretching cylinder are discussed under the influence of a magnetic field. By means of the similarity transformations the highly non-linear governing system of PDE is converted to ODE. We use the built-in function bvp4c in MATLAB to solve this system of ODE. The impact of distinctive parameters on velocity and temperature profile in the existence of an external magnetic field is depicted via graphs and deep analysis is also presented.


2014 ◽  
Vol 18 (suppl.2) ◽  
pp. 475-488 ◽  
Author(s):  
Kalidas Das

Some analyses have been carried out to study the influence of suction/blowing, thermal radiation and temperature dependent fluid properties on the hydro-magnetic incompressible electrically conducting fluid flow and heat transfer over a permeable stretching surface with partial slip boundary conditions. It is assumed that the fluid viscosity and the thermal conductivity vary as an inverse function and linear function of temperature respectively. Using the similarity transformation, the governing system of non-linear partial differential equations are transformed into non-linear ordinary differential equations and are solved numerically using symbolic software MATHEMATICA 7.0. The effects of various physical parameters on the flow and heat transfer characteristics as well as the skin friction coefficient and Nusselt number are illustrated graphically. The physical aspects of the problem are highlighted and discussed.


2017 ◽  
Vol 21 (5) ◽  
pp. 2095-2104 ◽  
Author(s):  
Mohammadreza Azimi ◽  
Rouzbeh Riazi

The steady 2-D heat transfer and flow between two non-parallel walls of a graphene oxide nanofluid in presence of uniform magnetic field are investigated in this paper. The analytical solution of the non-linear problem is obtained by Galerkin optimal homotopy asymptotic method. At first a similarity transformation is used to reduce the partial differential equations modeling the flow and heat transfer to ordinary non-linear differential equation systems containing the semi angle between the plate?s parameter, Reynolds number, the magnetic field strength, nanoparticle volume fraction, Eckert and Prandtl numbers. Finally, the obtained analytical results have been compared with results achieved from previous works in some cases.


2010 ◽  
Vol 97-101 ◽  
pp. 2797-2800
Author(s):  
Da Pei Tang ◽  
Qing Gao ◽  
Ying Hui Li ◽  
Fan Xiu Lu

A multiple fields’ coupled model of new magnetic controlled DC plasma torch, which was used for CVD diamond film, was presented. In this model, the effects of electric field and magnetic field on the flow field and temperature field were taken into account, and the fluid dynamics equations were modified by the addition of some source terms relating to electromagnetic field, such as Lorentz force, joule heating, and radiative cooling. Conversely, the generalized ohm’s law was used to solve the current density, which reflected the effects of flow field and temperature field on the electric field and magnetic field. In addition, the rest Maxwell’s equations and external solenoid magnetic field equation were also modeled. In order to know the effect of external magnetic field on the torch, the current intensity of external solenoid was chosen to simulate its influence on the flow and heat transfer in the torch. Results show that external magnetic field plays a part in stirring the plasma, which is advantageous for the preparation of diamond film. The larger the external solenoid current intensity is, the better the uniformity of the temperature and velocity of plasma is.


2013 ◽  
Vol 18 (2) ◽  
pp. 425-445 ◽  
Author(s):  
N. Kishan ◽  
B. Shashidar Reddy

The problem of a magneto-hydro dynamic flow and heat transfer to a non-Newtonian power-law fluid flow past a continuously moving flat porous plate in the presence of sucion/injection with heat flux by taking into consideration the viscous dissipation is analysed. The non-linear partial differential equations governing the flow and heat transfer are transformed into non-linear ordinary differential equations using appropriate transformations and then solved numerically by an implicit finite difference scheme. The solution is found to be dependent on various governing parameters including the magnetic field parameter M, power-law index n, suction/injection parameter ƒw, Prandtl number Pr and Eckert number Ec. A systematical study is carried out to illustrate the effects of these major parameters on the velocity profiles, temperature profile, skin friction coefficient and rate of heat transfer and the local Nusslet number.


CFD letters ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 97-105
Author(s):  
Ahmad Nazri Mohamad Som ◽  
Nurul Shahirah Mohd Adnan ◽  
Norihan Md. Arifin ◽  
Norfifah Bachok ◽  
Fadzilah Md Ali ◽  
...  

A stability analysis of dual solution for the problem of stagnation-point slip flow over a stretching or shrinking cylinder is studied. The partial differential equations governing will be transformed to a set of coupled nonlinear nonsimilar equations via similarity transformations. The transformed governing equations are solved numerically using the bvp4c function in MATLAB software. Numerical calculations exhibit the existence of dual solution and the implementation of stability analysis proved that the first solution is stable and physically realizable.


Sign in / Sign up

Export Citation Format

Share Document