scholarly journals A Fully Automated High-Throughput Flow Cytometry Screening System Enabling Phenotypic Drug Discovery

2018 ◽  
Vol 23 (7) ◽  
pp. 697-707 ◽  
Author(s):  
John Joslin ◽  
James Gilligan ◽  
Paul Anderson ◽  
Catherine Garcia ◽  
Orzala Sharif ◽  
...  

The goal of high-throughput screening is to enable screening of compound libraries in an automated manner to identify quality starting points for optimization. This often involves screening a large diversity of compounds in an assay that preserves a connection to the disease pathology. Phenotypic screening is a powerful tool for drug identification, in that assays can be run without prior understanding of the target and with primary cells that closely mimic the therapeutic setting. Advanced automation and high-content imaging have enabled many complex assays, but these are still relatively slow and low throughput. To address this limitation, we have developed an automated workflow that is dedicated to processing complex phenotypic assays for flow cytometry. The system can achieve a throughput of 50,000 wells per day, resulting in a fully automated platform that enables robust phenotypic drug discovery. Over the past 5 years, this screening system has been used for a variety of drug discovery programs, across many disease areas, with many molecules advancing quickly into preclinical development and into the clinic. This report will highlight a diversity of approaches that automated flow cytometry has enabled for phenotypic drug discovery.


RSC Advances ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 4507-4513 ◽  
Author(s):  
Xu-Dong Zhu ◽  
Xiang Shi ◽  
Shu-Wen Wang ◽  
Ju Chu ◽  
Wei-Hong Zhu ◽  
...  

A high-throughput screening system based on droplet microfluidic sorting was developed and employed for screening of high lactic acid-producing Bacillus coagulans.



2000 ◽  
Vol 22 (5) ◽  
pp. 149-157 ◽  
Author(s):  
Ralf Thiericke

Secondary metabolites from plants, animals and microorganisms have been proven to be an outstanding source for new and innovative drugs and show a striking structural diversity that supplements chemically synthesized compounds or libraries in drug discovery programs. Unfortunately, extracts from natural sources are usually complex mixtures of compounds:: often generated in time consuming and for the most part manual processes. As quality and quantity of the provided samples play a pivotal role in the success of high-throughput screening programs this poses serious problems. In order to make samples of natural origin competitive with synthetic compound libraries, we devised a novel, automated sample preparation procedure based on solid-phase extraction (SPE). By making use of a modified Zymark RapidTrace®SPE workstation an easy-to-handle and effective fractionation method has been developed which allows the generation of highquality samples from natural origin, fulfilling the requirements of an integration into high-throughput screening programs.



2020 ◽  
Vol 157 ◽  
pp. 107555
Author(s):  
Karla Ilić Đurđić ◽  
Selin Ece ◽  
Raluca Ostafe ◽  
Simon Vogel ◽  
Stefan Schillberg ◽  
...  


2001 ◽  
Vol 6 (6) ◽  
pp. 429-440 ◽  
Author(s):  
Michael W. Pantoliano ◽  
Eugene C. Petrella ◽  
Joseph D. Kwasnoski ◽  
Victor S. Lobanov ◽  
James Myslik ◽  
...  

More general and universally applicable drug discovery assay technologies are needed in order to keep pace with the recent advances in combinatorial chemistry and genomics-based target generation. Ligand-induced conformational stabilization of proteins is a well-understood phenomenon in which substrates, inhibitors, cofactors, and even other proteins provide enhanced stability to proteins on binding. This phenomenon is based on the energetic coupling of the ligand-binding and protein-melting reactions. In an attempt to harness these biophysical properties for drug discovery, fully automated instrumentation was designed and implemented to perform miniaturized fluorescence-based thermal shift assays in a microplate format for the high throughput screening of compound libraries. Validation of this process and instrumentation was achieved by investigating ligand binding to more than 100 protein targets. The general applicability of the thermal shift screening strategy was found to be an important advantage because it circumvents the need to design and retool new assays with each new therapeutic target. Moreover, the miniaturized thermal shift assay methodology does not require any prior knowledge of a therapeutic target's function, making it ideally suited for the quantitative high throughput drug screening and evaluation of targets derived from genomics.



2005 ◽  
Vol 10 (4) ◽  
pp. 374-382 ◽  
Author(s):  
Susan M. Young ◽  
Cristian Bologa ◽  
Eric R. Prossnitz ◽  
Tudor I. Oprea ◽  
Larry A. Sklar ◽  
...  

High-throughput flow cytometry (HTFC), enabled by faster automated sample processing, represents a promising high- content approach for compound library screening. HyperCyt® is a recently developed automated HTFC analysis system by which cell samples are rapidly aspirated from microplate wells and delivered to the flow cytometer. The formylpeptide receptor (FPR) family of G protein–coupled receptors contributes to the localization and activation of tissue-damaging leukocytes at sites of chronic inflammation. Here, the authors describe development and application of an HTFC screening approach to detect potential anti-inflammatory compounds that block ligand binding to FPR. Using a homogeneous no-wash assay, samples were routinely processed at 1.5 s/well (~2500 cells analyzed/sample), allowing a 96-well plate to be processed in less than 2.5 min. Assay sensitivity and accuracy were validated by detection of a previously documented active compound with relatively low FPR affinity (sulfinpyrazone, inhibition constant [Ki]=14 μM) from among a collection of 880 compounds in the Prestwick Chemical Library. The HyperCyt® system was therefore demonstrated to be a robust, sensitive, and highly quantitative method with which to screen lead compound libraries in a 96-well format.



2017 ◽  
Author(s):  
Sarah Wurts Black ◽  
Jessica D. Sun ◽  
Alex Laihsu ◽  
Nikki Kimura ◽  
Pamela Santiago ◽  
...  

AbstractBackgroundAssessment of sleep/wake by electroencephalography (EEG) and electromyography (EMG) is invasive, resource intensive, and not amenable to rapid screening at scale for drug discovery. In the preclinical development of therapeutics for narcolepsy, efficacy tests are hindered by the lack of a non-EEG/EMG based translational test of symptom severity. The current methods study offers proof-of-principle that PiezoSleep (noninvasive, unsupervised piezoelectric monitoring of gross body movement, together with respiration patterns during behavioral quiescence), can be used to determine sleep/wake as applicable to the development of wake-promoting therapeutics. First, the translational wake-maintenance score (WMS, the ratio of time during the first half of the dark period spent in long wake bouts to short sleep bouts) of the PiezoSleep narcolepsy screen was introduced as a means by which to rank narcoleptic orexin/ataxin-3 mice and wild type mice by sleep/wake fragmentation severity. Accuracy of the WMS to detect narcoleptic phenotypes were determined in genotype-confirmed orexin/ataxin-3 mice and wild type colony mates. The WMS was used to identify the most highly symptomatic mice for resource-intensive EEG/EMG studies for further analysis of specific arousal states. Second, PiezoSleep was demonstrated for use in high-throughput screening of wake-promoting compounds using modafinil in orexin/ataxin-3 and wild type mice.ResultsThe WMS detected a narcoleptic phenotype with 89% sensitivity, 92% specificity and 98% positive predictive value. A 15-fold difference in WMS differentiated wild type littermates from the most severely affected orexin/ataxin-3 mice. Follow-up EEG/EMG study indicated 82% of the orexin/ataxin-3 mice with the lowest wake-maintenance scores met or exceeded the cataplexy-occurrence threshold (≥ 3 bouts) for inclusion in therapeutic efficacy studies. In the PiezoSleep dose-response study, the ED50 for wake-promotion by modafinil was approximately 50 mg/kg in both genotypes. Using unsupervised piezoelectric monitoring, the efficacy of wake-promoting compounds can be determined in a 5-arm study with 60 mice in less than one week—a fraction of the time compared to EEG/EMG studies.ConclusionsThe WMS on the PiezoSleep narcolepsy screen quantifies the inability to sustain wakefulness and provides an accurate measure of the narcoleptic phenotype in mice. PiezoSleep offers rapid, scalable assessment of sleep/wake for high-throughput screening in drug discovery.



2018 ◽  
Vol 23 (7) ◽  
pp. 719-731
Author(s):  
Mei Ding ◽  
Roger Clark ◽  
Catherine Bardelle ◽  
Anna Backmark ◽  
Tyrrell Norris ◽  
...  

Flow cytometry is a powerful tool providing multiparametric analysis of single cells or particles. The introduction of faster plate-based sampling technologies on flow cytometers has transformed the technology into one that has become attractive for higher throughput drug discovery screening. This article describes AstraZeneca’s perspectives on the deployment and application of high-throughput flow cytometry (HTFC) platforms for small-molecule high-throughput screening (HTS), structure–activity relationship (SAR) and phenotypic screening, and antibody screening. We describe the overarching HTFC workflow, including the associated automation and data analysis, along with a high-level overview of our HTFC assay portfolio. We go on to discuss the practical challenges encountered and solutions adopted in the course of our deployment of HTFC, as well as future enhancements and expansion of the technology to new areas of drug discovery.





1999 ◽  
Vol 4 (1) ◽  
pp. 15-25 ◽  
Author(s):  
Ingrid Schmid ◽  
Isabel Sattler ◽  
Susanne Grabley ◽  
Ralf Thiericke

At present, compound libraries from combinatorial chemistry are the major source for high throughput screening (HTS) programs in drug discovery. On the other hand, nature has been proven to be an outstanding source for new and innovative drugs. Secondary metabolites from plants, animals, and microorganisms show a striking structural diversity that supplements chemically synthesized compounds or libraries in drug discovery programs. Unfortunately, extracts from natural sources are usually complex mixtures of compounds, often generated in time-consuming and, for the most part, manual processes. Because quality and quantity of the provided samples play a pivotal role in the success of HTS programs, this poses serious problems. In order to make samples of natural origin competitive with synthetic compound libraries, we devised a novel, automated sample preparation procedure based on solid-phase extraction (SPE). By making use of modified Zymark (Hopkinton, MA) RapidTrace® SPE workstations, we developed an easy-to-handle and effective fractionation method that generates high-quality samples from natural origin, fulfilling the requirements for an integration in high throughput drug discovery programs.



Sign in / Sign up

Export Citation Format

Share Document