scholarly journals Rapid, noninvasive, and unsupervised detection of sleep/wake using piezoelectric monitoring for pharmacological studies in narcoleptic mice

2017 ◽  
Author(s):  
Sarah Wurts Black ◽  
Jessica D. Sun ◽  
Alex Laihsu ◽  
Nikki Kimura ◽  
Pamela Santiago ◽  
...  

AbstractBackgroundAssessment of sleep/wake by electroencephalography (EEG) and electromyography (EMG) is invasive, resource intensive, and not amenable to rapid screening at scale for drug discovery. In the preclinical development of therapeutics for narcolepsy, efficacy tests are hindered by the lack of a non-EEG/EMG based translational test of symptom severity. The current methods study offers proof-of-principle that PiezoSleep (noninvasive, unsupervised piezoelectric monitoring of gross body movement, together with respiration patterns during behavioral quiescence), can be used to determine sleep/wake as applicable to the development of wake-promoting therapeutics. First, the translational wake-maintenance score (WMS, the ratio of time during the first half of the dark period spent in long wake bouts to short sleep bouts) of the PiezoSleep narcolepsy screen was introduced as a means by which to rank narcoleptic orexin/ataxin-3 mice and wild type mice by sleep/wake fragmentation severity. Accuracy of the WMS to detect narcoleptic phenotypes were determined in genotype-confirmed orexin/ataxin-3 mice and wild type colony mates. The WMS was used to identify the most highly symptomatic mice for resource-intensive EEG/EMG studies for further analysis of specific arousal states. Second, PiezoSleep was demonstrated for use in high-throughput screening of wake-promoting compounds using modafinil in orexin/ataxin-3 and wild type mice.ResultsThe WMS detected a narcoleptic phenotype with 89% sensitivity, 92% specificity and 98% positive predictive value. A 15-fold difference in WMS differentiated wild type littermates from the most severely affected orexin/ataxin-3 mice. Follow-up EEG/EMG study indicated 82% of the orexin/ataxin-3 mice with the lowest wake-maintenance scores met or exceeded the cataplexy-occurrence threshold (≥ 3 bouts) for inclusion in therapeutic efficacy studies. In the PiezoSleep dose-response study, the ED50 for wake-promotion by modafinil was approximately 50 mg/kg in both genotypes. Using unsupervised piezoelectric monitoring, the efficacy of wake-promoting compounds can be determined in a 5-arm study with 60 mice in less than one week—a fraction of the time compared to EEG/EMG studies.ConclusionsThe WMS on the PiezoSleep narcolepsy screen quantifies the inability to sustain wakefulness and provides an accurate measure of the narcoleptic phenotype in mice. PiezoSleep offers rapid, scalable assessment of sleep/wake for high-throughput screening in drug discovery.


2018 ◽  
Vol 23 (7) ◽  
pp. 697-707 ◽  
Author(s):  
John Joslin ◽  
James Gilligan ◽  
Paul Anderson ◽  
Catherine Garcia ◽  
Orzala Sharif ◽  
...  

The goal of high-throughput screening is to enable screening of compound libraries in an automated manner to identify quality starting points for optimization. This often involves screening a large diversity of compounds in an assay that preserves a connection to the disease pathology. Phenotypic screening is a powerful tool for drug identification, in that assays can be run without prior understanding of the target and with primary cells that closely mimic the therapeutic setting. Advanced automation and high-content imaging have enabled many complex assays, but these are still relatively slow and low throughput. To address this limitation, we have developed an automated workflow that is dedicated to processing complex phenotypic assays for flow cytometry. The system can achieve a throughput of 50,000 wells per day, resulting in a fully automated platform that enables robust phenotypic drug discovery. Over the past 5 years, this screening system has been used for a variety of drug discovery programs, across many disease areas, with many molecules advancing quickly into preclinical development and into the clinic. This report will highlight a diversity of approaches that automated flow cytometry has enabled for phenotypic drug discovery.



2000 ◽  
Vol 5 (6) ◽  
pp. 441-454 ◽  
Author(s):  
Michael J. Greig ◽  
Jessica M. Robinson

With the advent of combinatorial chemistry and high throughput screening, a major bottleneck in the pharmaceutical industry has changed from quickly finding active compounds to limiting them to a manageable number for proper follow-up. With hundreds to thousands of active compounds identified by a multitude of biological screens, there need to be rapid and unambiguous methods for eliminating false positive, toxic, or otherwise difficult compounds from further scrutiny. We have used electrospray ionization mass spectrometry as a rapid screening method to identify compounds from viral screens that yield a positive assay response by interaction with DNA rather than inhibiting the target enzyme. Both the sample preparation and data acquisition have been automated, allowing the screening of all hits from relevant biological screens (up to 1,000/week). The assay was validated using several known DNA intercalators and minor groove binders. These "standards" and many but not all of our "active compounds" were shown to form noncovalent complexes with a variety of different DNA:DNA and DNA:RNA duplexes.



2020 ◽  
pp. 247255522094276
Author(s):  
Saman Honarnejad ◽  
Stan van Boeckel ◽  
Helma van den Hurk ◽  
Steven van Helden

The European Lead Factory (ELF) consortium provides European academics and small and medium enterprises access to ~0.5 million unique compounds, a state-of-the-art ultra-high-throughput screening (u-HTS) platform, and industrial early drug discovery (DD) expertise with the aim of delivering innovative DD starting points. From 2013 to 2018, 154 proposals for eight target classes in seven therapeutic areas were submitted to the ELF consortium, 88 of which were accepted by the selection committee. During this period, 76 primary assays based on seven different readout technologies were optimized and mainly miniaturized to 1536-well plates. In total, 72 u-HTS campaigns were carried out, and follow-up work including hit triage through orthogonal, deselection, selectivity, and biophysical assays were finalized. This ambitious project showed that besides the quality of the compound library and the primary assay, the success of centralized u-HTS of large compound libraries across many target classes, various assay types, and different readout technologies is also largely dependent on the capacity and flexibility of the automation on one hand and the hit-triaging phase on the other, particularly because of undesired compound-assay interference. Thus far, the delivered hit lists from the ELF consortium have resulted in spinoffs, patents, in vivo proof of concepts, preclinical development programs, peer-reviewed publications, PhD theses, and much more, demonstrating early success indications.



2003 ◽  
Vol 9 (1) ◽  
pp. 49-58
Author(s):  
Margit Asmild ◽  
Nicholas Oswald ◽  
Karen M. Krzywkowski ◽  
Søren Friis ◽  
Rasmus B. Jacobsen ◽  
...  




2021 ◽  
pp. 247255522110232
Author(s):  
Michael D. Scholle ◽  
Doug McLaughlin ◽  
Zachary A. Gurard-Levin

Affinity selection mass spectrometry (ASMS) has emerged as a powerful high-throughput screening tool used in drug discovery to identify novel ligands against therapeutic targets. This report describes the first high-throughput screen using a novel self-assembled monolayer desorption ionization (SAMDI)–ASMS methodology to reveal ligands for the human rhinovirus 3C (HRV3C) protease. The approach combines self-assembled monolayers of alkanethiolates on gold with matrix-assisted laser desorption ionization time-of-flight (MALDI TOF) mass spectrometry (MS), a technique termed SAMDI-ASMS. The primary screen of more than 100,000 compounds in pools of 8 compounds per well was completed in less than 8 h, and informs on the binding potential and selectivity of each compound. Initial hits were confirmed in follow-up SAMDI-ASMS experiments in single-concentration and dose–response curves. The ligands identified by SAMDI-ASMS were further validated using differential scanning fluorimetry (DSF) and in functional protease assays against HRV3C and the related SARS-CoV-2 3CLpro enzyme. SAMDI-ASMS offers key benefits for drug discovery over traditional ASMS approaches, including the high-throughput workflow and readout, minimizing compound misbehavior by using smaller compound pools, and up to a 50-fold reduction in reagent consumption. The flexibility of this novel technology opens avenues for high-throughput ASMS assays of any target, thereby accelerating drug discovery for diverse diseases.



2021 ◽  
Vol 22 (9) ◽  
pp. 4417
Author(s):  
Lester J Lambert ◽  
Stefan Grotegut ◽  
Maria Celeridad ◽  
Palak Gosalia ◽  
Laurent JS De Backer ◽  
...  

Many human diseases are the result of abnormal expression or activation of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). Not surprisingly, more than 30 tyrosine kinase inhibitors (TKIs) are currently in clinical use and provide unique treatment options for many patients. PTPs on the other hand have long been regarded as “undruggable” and only recently have gained increased attention in drug discovery. Striatal-enriched tyrosine phosphatase (STEP) is a neuron-specific PTP that is overactive in Alzheimer’s disease (AD) and other neurodegenerative and neuropsychiatric disorders, including Parkinson’s disease, schizophrenia, and fragile X syndrome. An emergent model suggests that the increase in STEP activity interferes with synaptic function and contributes to the characteristic cognitive and behavioral deficits present in these diseases. Prior efforts to generate STEP inhibitors with properties that warrant clinical development have largely failed. To identify novel STEP inhibitor scaffolds, we developed a biophysical, label-free high-throughput screening (HTS) platform based on the protein thermal shift (PTS) technology. In contrast to conventional HTS using STEP enzymatic assays, we found the PTS platform highly robust and capable of identifying true hits with confirmed STEP inhibitory activity and selectivity. This new platform promises to greatly advance STEP drug discovery and should be applicable to other PTP targets.





Sign in / Sign up

Export Citation Format

Share Document