scholarly journals Alphavirus-based hepatitis C virus therapeutic vaccines: can universal helper epitopes enhance HCV-specific cytotoxic T lymphocyte responses?

2019 ◽  
Vol 7 ◽  
pp. 251513551987467
Author(s):  
Georgia Koutsoumpli ◽  
Peng Peng Ip ◽  
Ilona Schepel ◽  
Baukje Nynke Hoogeboom ◽  
Annemarie Boerma ◽  
...  

Background: Antigen-specific T cell immune responses play a pivotal role in resolving acute and chronic hepatitis C virus (HCV) infections. Currently, no prophylactic or therapeutic vaccines against HCV are available. We previously demonstrated the preclinical potency of therapeutic HCV vaccines based on recombinant Semliki Forest virus (SFV) replicon particles. However, clinical trials do not always meet the high expectations of preclinical studies, thus, optimization of vaccine strategies is crucial. In efforts to further increase the frequency of HCV-specific immune responses in the candidate SFV-based vaccines, the authors assessed whether inclusion of three strong, so-called universal helper T cell epitopes, and an endoplasmic reticulum localization, and retention signal (collectively termed sigHELP-KDEL cassette) could enhance HCV-specific immune responses. Methods: We included the sigHELP-KDEL cassette in two of the candidate SFV-based HCV vaccines, targeting NS3/4A and NS5A/B proteins. We characterized the new constructs in vitro for the expression and stability of the transgene-encoded proteins. Their immune efficacy with respect to HCV-specific immune responses in vivo was compared with the parental SFV vaccine expressing the corresponding HCV antigen. Further characterization of the functionality of the HCV-specific CD8+ T cells was assessed by surface and intracellular cytokine staining and flow cytometry analysis. Results: Moderate, but significantly, enhanced frequencies of antigen-specific immune responses were achieved upon lower/suboptimal dosage immunization. In optimal dosage immunization, the inclusion of the cassette did not further increase the frequencies of HCV-specific CD8+ T cells when compared with the parental vaccines and the frequencies of effector and memory populations were identical. Conclusion: We hypothesize that the additional effect of the sigHELP-KDEL cassette in SFV-based vaccines depends on the immunogenicity, nature, and stability of the target antigen expressed by the vaccine.

2012 ◽  
Vol 93 (2) ◽  
pp. 247-258 ◽  
Author(s):  
Anna Pasetto ◽  
Lars Frelin ◽  
Anette Brass ◽  
Anila Yasmeen ◽  
Sarene Koh ◽  
...  

Hepatitis C virus (HCV) is a major cause of severe liver disease, and one major contributing factor is thought to involve a dysfunction of virus-specific T-cells. T-cell receptor (TCR) gene therapy with HCV-specific TCRs would increase the number of effector T-cells to promote virus clearance. We therefore took advantage of HLA-A2 transgenic mice to generate multiple TCR candidates against HCV using DNA vaccination followed by generation of stable T-cell–BW (T-BW) tumour hybrid cells. Using this approach, large numbers of non-structural protein 3 (NS3)-specific functional T-BW hybrids can be generated efficiently. These predominantly target the genetically stable HCV genotype 1 NS31073–1081 CTL epitope, frequently associated with clearance of HCV in humans. These T-BW hybrid clones recognized the NS31073 peptide with a high avidity. The hybridoma effectively recognized virus variants and targeted cells with low HLA-A2 expression, which has not been reported previously. Importantly, high-avidity murine TCRs effectively redirected human non-HCV-specific T-lymphocytes to recognize human hepatoma cells with HCV RNA replication driven by a subgenomic HCV replicon. Taken together, TCR candidates with a range of functional avidities, which can be used to study immune recognition of HCV-positive targets, have been generated. This has implications for TCR-related immunotherapy against HCV.


2012 ◽  
Vol 93 (11) ◽  
pp. 2399-2407 ◽  
Author(s):  
Mohammed A. Sarhan ◽  
Annie Y. Chen ◽  
Rodney S. Russell ◽  
Tomasz I. Michalak

Hepatitis C virus (HCV) is a hepatotropic virus that also infects cells of the immune system. HCV clones cultivated in human hepatoma Huh-7.5 cells have significantly advanced our understanding of HCV replication and candidate hepatocyte receptors. However, naturally occurring patient-derived HCV, in contrast to the HCV JFH-1 clone, is unable to infect Huh-7.5 cells, while it can replicate in human primary T-cells and selected T-cell lines. To better understand this incongruity, we examined the susceptibility of primary T-cells, PBMCs and T-cell lines to infection with patient-derived HCV, the classical HCV JFH-1 and a cell culture-adapted JFH1T known to be highly infectious to Huh-7.5 cells. We also tested whether Huh-7.5 cells are prone to virus readily infecting T-lymphocytes. The results revealed that while primary T-cells and Molt4 and Jurkat T-cell lines were susceptible to patient-derived HCV, they were resistant to infection with either JFH1T or JFH-1. However, the JFH1T clone interacted more firmly, although non-productively, with the cells than JFH-1. Further, Huh-7.5 cells robustly supported replication of JFH1T but not patient-derived, wild-type virus, despite using highly sensitive detection assays. In conclusion, JFH-1 and JFH1T clones were unable to establish productive infection in human primary T-cells, PBMCs and T-cell lines known to be prone to infection by patient-derived HCV, while Huh-7.5 cells were resistant to infection with naturally occurring virus infecting immune cells. The data showed that the ability to infect lymphocytes is a characteristic of native virus but not laboratory HCV clones.


npj Vaccines ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Stefania Capone ◽  
Anthony Brown ◽  
Felicity Hartnell ◽  
Mariarosaria Del Sorbo ◽  
Cinzia Traboni ◽  
...  

Abstract Simian adenoviral and modified vaccinia Ankara (MVA) viral vectors used in heterologous prime-boost strategies are potent inducers of T cells against encoded antigens and are in advanced testing as vaccine carriers for a wide range of infectious agents and cancers. It is unclear if these responses can be further enhanced or sustained with reboosting strategies. Furthermore, despite the challenges involved in MVA manufacture dose de-escalation has not been performed in humans. In this study, healthy volunteers received chimpanzee-derived adenovirus-3 and MVA vaccines encoding the non-structural region of hepatitis C virus (ChAd3-NSmut/MVA-NSmut) 8 weeks apart. Volunteers were then reboosted with a second round of ChAd3-NSmut/MVA-NSmut or MVA-NSmut vaccines 8 weeks or 1-year later. We also determined the capacity of reduced doses of MVA-NSmut to boost ChAd3-NSmut primed T cells. Reboosting was safe, with no enhanced reactogenicity. Reboosting after an 8-week interval led to minimal re-expansion of transgene-specific T cells. However, after a longer interval, T cell responses expanded efficiently and memory responses were enhanced. The 8-week interval regimen induced a higher percentage of terminally differentiated and effector memory T cells. Reboosting with MVA-NSmut alone was as effective as with ChAd3-NSmut/MVA-NSmut. A ten-fold lower dose of MVA (2 × 107pfu) induced high-magnitude, sustained, broad, and functional Hepatitis C virus (HCV)-specific T cell responses, equivalent to standard doses (2 × 108 pfu). Overall, we show that following Ad/MVA prime-boost vaccination reboosting is most effective after a prolonged interval and is productive with MVA alone. Importantly, we also show that a ten-fold lower dose of MVA is as potent in humans as the standard dose.


2019 ◽  
Vol 93 (7) ◽  
Author(s):  
María Q. Marín ◽  
Patricia Pérez ◽  
Karl Ljungberg ◽  
Carlos Óscar S. Sorzano ◽  
Carmen E. Gómez ◽  
...  

ABSTRACTHepatitis C is a liver disease caused by the hepatitis C virus (HCV) affecting 71 million people worldwide with no licensed vaccines that prevent infection. Here, we have generated four novel alphavirus-based DNA-launched self-amplifying RNA replicon (DREP) vaccines expressing either structural core-E1-E2 or nonstructural p7-NS2-NS3 HCV proteins of genotype 1a placed under the control of an alphavirus promoter, with or without an alphaviral translational enhancer (grouped as DREP-HCV or DREP-e-HCV, respectively). DREP vectors are known to induce cross-priming and further stimulation of immune responses through apoptosis, and here we demonstrate that they efficiently trigger apoptosis-related proteins in transfected cells. Immunization of mice with the DREP vaccines as the priming immunization followed by a heterologous boost with a recombinant modified vaccinia virus Ankara (MVA) vector expressing the nearly full-length genome of HCV (MVA-HCV) induced potent and long-lasting HCV-specific CD4+and CD8+T cell immune responses that were significantly stronger than those of a homologous MVA-HCV prime/boost immunization, with the DREP-e-HCV/MVA-HCV combination the most immunogenic regimen. HCV-specific CD4+and CD8+T cell responses were highly polyfunctional, had an effector memory phenotype, and were mainly directed against E1-E2 and NS2-NS3, respectively. Additionally, DREP/MVA-HCV immunization regimens induced higher antibody levels against HCV E2 protein than homologous MVA-HCV immunization. Collectively, these results provided an immunization protocol against HCV by inducing high levels of HCV-specific T cell responses as well as humoral responses. These findings reinforce the combined use of DREP-based vectors and MVA-HCV as promising prophylactic and therapeutic vaccines against HCV.IMPORTANCEHCV represents a global health problem as more than 71 million people are chronically infected worldwide. Direct-acting antiviral agents can cure HCV infection in most patients, but due to the high cost of these agents and the emergence of resistant mutants, they do not represent a feasible and affordable strategy to eradicate the virus. Therefore, a vaccine is an urgent goal that requires efforts to understand the correlates of protection for HCV clearance. Here, we describe for the first time the generation of novel vaccines against HCV based on alphavirus DNA replicons expressing HCV antigens. We demonstrate that potent T cell immune responses, as well as humoral immune responses, against HCV can be achieved in mice by using a combined heterologous prime/boost immunization protocol consisting of the administration of alphavirus replicon DNA vectors as the priming immunization followed by a boost with a recombinant modified vaccinia virus Ankara vector expressing HCV antigens.


2020 ◽  
Vol 94 (10) ◽  
Author(s):  
Alex S. Hartlage ◽  
Christopher M. Walker ◽  
Amit Kapoor

ABSTRACT Immune-competent animal models for the hepatitis C virus (HCV) are nonexistent, impeding studies of host-virus interactions and vaccine development. Experimental infection of laboratory rats with a rodent hepacivirus isolated from Rattus norvegicus (RHV) is a promising surrogate model due to its recapitulation of HCV-like chronicity. However, several aspects of rat RHV infection remain unclear, for instance, how RHV evades host adaptive immunity to establish persistent infection. Here, we analyzed the induction, differentiation, and functionality of RHV-specific CD8 T cell responses that are essential for protection against viral persistence. Virus-specific CD8 T cells targeting dominant and subdominant major histocompatibility complex class I epitopes proliferated considerably in liver after RHV infection. These populations endured long term yet never acquired antiviral effector functions or selected for viral escape mutations. This was accompanied by the persistent upregulation of programmed cell death-1 and absent memory cell formation, consistent with a dysfunctional phenotype. Remarkably, transient suppression of RHV viremia with a direct-acting antiviral led to the priming of CD8 T cells with partial effector function, driving the selection of a viral escape variant. These data demonstrate an intrinsic abnormality within CD8 T cells primed by rat RHV infection, an effect that is governed at least partially by the magnitude of early virus replication. Thus, this model could be useful in investigating mechanisms of CD8 T cell subversion, leading to the persistence of hepatotropic pathogens such as HCV. IMPORTANCE Development of vaccines against hepatitis C virus (HCV), a major cause of cirrhosis and cancer, has been stymied by a lack of animal models. The recent discovery of an HCV-like rodent hepacivirus (RHV) enabled the development of such a model in rats. This platform recapitulates HCV hepatotropism and viral chronicity necessary for vaccine testing. Currently, there are few descriptions of RHV-specific responses and why they fail to prevent persistent infection in this model. Here, we show that RHV-specific CD8 T cells, while induced early at high magnitude, do not develop into functional effectors capable of controlling virus. This defect was partially alleviated by short-term treatment with an HCV antiviral. Thus, like HCV, RHV triggers dysfunction of virus-specific CD8 T cells that are vital for infection resolution. Additional study of this evasion strategy and how to mitigate it could enhance our understanding of hepatotropic viral infections and lead to improved vaccines and therapeutics.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S163-S163
Author(s):  
Alex S Hartlage ◽  
Amit Kapoor

Abstract Background Virus-specific CD8 T cells are essential for control of acute hepatitis C virus (HCV) infections, yet spontaneously fail in most patients leading to lifelong chronicity and increased risk for severe liver diseases. Efforts to study HCV-specific CD8 T-cell impairment have been hampered by a lack of small animal models. Recently, we established a rat model of chronic HCV-like infection using a hepacivirus homolog identified in Rattus norvegicus. The nature of virus-specific CD8 T-cell immunity in this model has yet to be determined. Methods Using two MHC class I tetramers against epitopes located in the E1 and NS5B proteins, we tracked the induction and phenotype of virus-specific CD8 T cells during chronic infection. Responses to infection were similarly analyzed in immune rats that had been vaccinated against the NS3-5B proteins, a strategy that is effective in this experimental setting. Results Virus-specific CD8 T cells expanded vigorously in liver shortly after infection but did not develop into functional effectors based upon failure to produce cytokines (IFNγ, TNFα, IL-2, IL-4, IL-10, IL-17A) following peptide stimulation. Notably, subversion of responses was not due to viral escape from T-cell recognition, but rather an intrinsic defect in the antiviral response. Indeed, these populations expressed the inhibitory receptor programed cell death-1 and other markers consistent with an arrested effector-like state precluded from long-term memory formation (CD127-CD27+CD28+CD62L-GranzymeB+). In contrast, adenoviral immunization of naïve rats protected virus-specific T cells from functional impairment after infection and supported memory response development, including against the E1 epitope not encoded by vaccine. Conclusion Together, our findings reveal a spontaneous failure of virus-specific CD8 T cells following rat hepacivirus challenge that is highly reminiscent of human HCV infections. Furthermore, these results highlight the utility and significance of this model for understanding mechanisms of HCV persistence and protective immunity necessary for the development of effective vaccines and immune interventions. Disclosures All authors: No reported disclosures.


2008 ◽  
Vol 82 (15) ◽  
pp. 7567-7577 ◽  
Author(s):  
Joana Caetano ◽  
António Martinho ◽  
Artur Paiva ◽  
Beatriz Pais ◽  
Cristina Valente ◽  
...  

ABSTRACT CD8 T cells play a major role in antiviral immune responses. Their importance for progression to chronic hepatitis C and response to treatment are still unclear. To address these issues, hepatitis C virus (HCV)-specific CD8 T-cell responses were monitored, at the single-cell level, using HLA class I pentamers specific for HCV core and HCV NS3 epitopes, in 23 chronically infected patients during treatment with pegylated alpha interferon and ribavirin. Patients who presented a sustained-response to therapy had stronger HCV-specific CD8 T-cell responses at all time points studied. Moreover, there were clear differences in the phenotypes of these cells during therapy: in responder patients, terminally differentiated effector cells increased more rapidly, and their frequency was always higher than in nonresponder patients. Sustained-responder patients also showed a higher frequency of HCV-specific CD8 T cells producing cytotoxic factors. Overall, a late and inefficient differentiation process of HCV-specific CD8 T cells might be associated with lack of response to treatment. A better knowledge of the mechanisms underlying this impairment may be important for the development of new therapeutic strategies to maintain, restore, or increase CD8 T-cell effectiveness in chronic HCV infection.


Sign in / Sign up

Export Citation Format

Share Document