scholarly journals WAM and WAVEWATCH-III intercomparison studies in the North Indian Ocean using Oceansat-2 Scatterometer winds

2019 ◽  
Vol 9 ◽  
pp. 251601921986656 ◽  
Author(s):  
J Swain ◽  
PA Umesh ◽  
AN Balchand

This paper presents the intercomparison of wave hindcasts using the third-generation models WAM and WAVEWATCH-III for the North Indian Ocean over 1° × 1° (latitude × longitude) grid resolutions, which reveals the first assessment of their relative performance through intercomparison of the model results. Hindcast wave parameters such as significant wave height, mean wave period, and swell wave height obtained from the simulations using Oceansat-2 scatterometer winds are analyzed to understand the quality and variability associated with the individual model outputs in the Indian Ocean. WAM and WAVEWATCH-III intercomparison studies are carried out for four different cases (January and June 2010, and January and June 2011). A comparative study of the relative performances of these two models is evaluated through extensive and robust statistical error analysis. Based on both qualitative and quantitative assessment of the model results, this study clearly indicates that both WAM and WAVEWATCH-III performed well in the common model domain using Oceansat-2 scatterometer winds, and they can be confidently used for long-term hindcasting in the North Indian Ocean, which will be very useful for most of the user community dealing with various coastal/offshore activities. The study also suggests that it would be preferable to consider available long-term wave measurements both in deep and coastal waters of the North Indian Ocean to validate and intercompare WAM and WAVEWATCH-III further.

2021 ◽  
Vol 8 ◽  
Author(s):  
N. Sunanda ◽  
J. Kuttippurath ◽  
R. Peter ◽  
Kunal Chakraborty ◽  
A. Chakraborty

COrona VIrus Disease (COVID) 2019 pandemic forced most countries to go into complete lockdown and India went on complete lockdown from 24th March 2020 to 8th June 2020. To understand the possible implications of lockdown, we analyze the long-term distribution of Net Primary Productivity (NPP) in the North Indian Ocean (NIO) and the factors that influence NPP directly and indirectly, for the period 2003–2019 and 2020 separately. There exists a seasonal cycle in the relationship between Aerosol Optical Depth (AOD), Chlorophyll-a (Chl-a) and NPP in agreement with the seasonal transport of aerosols and dust into these oceanic regions. In Arabian Sea (AS), the highest Chl-a (0.58 mg/m3), NPP (696.57 mg/C/m2/day) and AOD (0.39) are observed in June, July, August, and September (JJAS). Similarly, maximum Chl-a (0.48 mg/m3) and NPP (486.39 mg/C/m2/day) are found in JJAS and AOD (0.27) in March, April, and May (MAM) in Bay of Bengal. The interannual variability of Chl-a and NPP with wind speed and Sea Surface Temperature (SST) is also examined, where the former has a positive and the latter has a negative feedback to NPP. The interannual variability of NPP reveals a decreasing trend in NPP, which is interlinked with the increasing trend in SST and AOD. The analysis of wind, SST, Chl-a, and AOD for the pre-lockdown, lockdown, and post lockdown periods of 2020 is employed to understand the impact of COVID-19 lockdown on NPP. The assessment shows the reduction in AOD, decreased wind speeds, increased SST and reduced NPP during the lockdown period as compared to the pre-lockdown, post-lockdown and climatology. This analysis is expected to help to understand the impact of aerosols on the ocean biogeochemistry, nutrient cycles in the ocean biogeochemical models, and to study the effects of climate change on ocean ecosystems.


2009 ◽  
Vol 39 (11) ◽  
pp. 2800-2819 ◽  
Author(s):  
Georgia D. Kalantzi ◽  
Christine Gommenginger ◽  
Meric Srokosz

Abstract Wave-breaking dissipation is one of the least understood processes implemented in contemporary wave models. Significant effort has been put in its parameterization, but it has not proven to be totally satisfactory, either theoretically or practically. In this work, the WAVEWATCH III (version 2.22; Tolman) wave model is used to evaluate the two wind input/dissipation source term packages that it includes: (i) Wave Model (WAM) cycle 3 (WAMDIG) and (ii) Tolman and Chalikov. Global model outputs were obtained under the same wind forcing for the two dissipation formulations and were collocated in space and time in the north Indian Ocean with Ocean Topography Experiment (TOPEX) altimeter data. The performance of the model was assessed by evaluating the statistical behavior of the collocated datasets. The parameters examined were significant wave height, wind speed, wind direction, wave direction, wave height for fully developed seas, and energy loss due to wave breaking. From the results, the behavior of the input/dissipation formulations in specific wind and wave conditions was identified; that is, the results give insight to the way the two source term packages “work” and how they respond to local wind sea or swell. Specifically, both of the packages were unable to perform adequately during a season when the area can be mostly affected by swell. However, the results confirmed that the examination of only integral spectral wave parameters does not give information on the inherent physical characteristics of the formulations. Further study, on the basis of point spectra, is necessary to examine the formulations’ performance across the wave spectrum.


2021 ◽  
Author(s):  
Marie Montero ◽  
Nicolas Reul ◽  
Clément de Boyer Montégut ◽  
Jérôme Vialard ◽  
Jean Tournadre

<p>Salinity plays an important role in the oceanic circulation, because of its impact on pressure gradients and the upper ocean stability. This is particularly the case in the North Indian Ocean where freshwater inputs from monsoonal rain and rivers into the Bay of Bengal and strong evaporation in the Arabian Sea leads to high salinity contrasts, and a strong variability tied to the large monsoonal currents seasonal cycle.</p><p>In situ salinity data is however too sparse to allow a detailed study of the contrasted and variable Northern Indian Ocean Sea Surface Salinity (SSS). This situation has changed since the launch of SMOS in 2009, and the advent of L-band-based SSS remote sensing with a much higher spatio-temporal sampling. Here, we explore the capacity of C and X-band measurements, such as those of AMSR-E (May 2002-October 2011) to reconstruct Northern Indian Ocean SSS prior 2009. Previous studies have indeed demonstrated the ability of C- and X-band products to reconstruct SSS in high-contrast regions like river estuaries, especially at high Sea Surface Temperature (SST), like in the Northern Indian Ocean.</p><p> </p><p>We are currently focusing on the development of the algorithm to reconstruct salinity from the C- and X-band data of AMSR-E. The ESA Climate Change Initiative (CCI) SSS dataset build from a merge of SMOS, Aquarius and SMAP data, provides a reference SSS that is both used for training our algorithm and for validation, over the common AMSR-E and CCI period (January 2010 to October 2011).</p><p>Our first results are encouraging: spatial contrast between the low-SSS values close to estuaries and along the coast and higher SSS in the middle of the Bay of Bengal as well as some aspects of the seasonal cycle are reproduced. However, spurious signals linked to either radio frequency interferences still need to be filtered out and signals associated with other residual geophysical contributions (e.g. wind, atmospheric vapor content) need to be better estimated. The long-term goal of this work is to merge the C-, X-, and L-band data with in-situ measurements and thus provide a long-term reconstruction of monthly SSS in the north Indian Ocean with a ~50km resolution.</p>


2021 ◽  
Vol 9 (4) ◽  
pp. 408
Author(s):  
Xi Chen ◽  
Mei Hong ◽  
Shiqi Wu ◽  
Kefeng Liu ◽  
Kefeng Mao

To study the optimal design of Wave Glider parameters in the wave environment of the Northwest Pacific Ocean, the North Indian Ocean, and the South China Sea, the average velocity of a Wave Glider was taken as the evaluation criterion. Wave reanalysis data from ERA5 were used to classify the mean wave height and period into five types by the K-means clustering method. In addition, a dynamic model was used to simulate the influence of umbilical length, airfoil, and maximum limited angle on the velocity of the Wave Glider under the five types of wave element. The force of the wings was simulated using FLUENT as the model input. The simulation results show that (1) 7 m is the most suitable umbilical length; (2) a smaller relative thickness should be selected in perfect conditions; and (3) for the first type of wave element, 15° is the best choice for the maximum limited angle, and 20° is preferred for the second, third, and fourth types, while 25° is preferred for the fifth type.


2012 ◽  
Vol 27 (3) ◽  
pp. 757-769 ◽  
Author(s):  
James I. Belanger ◽  
Peter J. Webster ◽  
Judith A. Curry ◽  
Mark T. Jelinek

Abstract This analysis examines the predictability of several key forecasting parameters using the ECMWF Variable Ensemble Prediction System (VarEPS) for tropical cyclones (TCs) in the North Indian Ocean (NIO) including tropical cyclone genesis, pregenesis and postgenesis track and intensity projections, and regional outlooks of tropical cyclone activity for the Arabian Sea and the Bay of Bengal. Based on the evaluation period from 2007 to 2010, the VarEPS TC genesis forecasts demonstrate low false-alarm rates and moderate to high probabilities of detection for lead times of 1–7 days. In addition, VarEPS pregenesis track forecasts on average perform better than VarEPS postgenesis forecasts through 120 h and feature a total track error growth of 41 n mi day−1. VarEPS provides superior postgenesis track forecasts for lead times greater than 12 h compared to other models, including the Met Office global model (UKMET), the Navy Operational Global Atmospheric Prediction System (NOGAPS), and the Global Forecasting System (GFS), and slightly lower track errors than the Joint Typhoon Warning Center. This paper concludes with a discussion of how VarEPS can provide much of this extended predictability within a probabilistic framework for the region.


Sign in / Sign up

Export Citation Format

Share Document