scholarly journals Intracellular localization of fibronectin using immunoperoxidase cytochemistry in light and electron microscopy.

1980 ◽  
Vol 28 (11) ◽  
pp. 1233-1241 ◽  
Author(s):  
K Hedman

An immunocytochemical staining method for light and electron microscopy was developed to permit adequate penetration of staining conjugates with high specificity, while preserving acceptable ultrastructure. For this purpose an indirect immunoperoxidase method with Staphylococcal protein A-peroxidase conjugates was used in the presence of saponin on aldehyde-saponin-fixed cells. As the first application, fibronectin was localized intracellularly in human embryonic skin fibroblasts. Fibronectin was detected in large amounts in the cisternae of rough endoplasmic reticulum and in 200 nm (secretory?) vesicles. Little fibronectin was present in the Golgi complex; the stacked Golgi cisternae were conspicuously devoid of this protein. The 200 nm vesicles were mostly distributed on the mature side of the Golgi apparatus. These results indicate that fibronectin is exclusively localized to intracellular structures involved in secretory function and suggest that fibronectin may not be processed in significant amounts within the cisternal stacks of the Golgi complex.

2000 ◽  
Vol 48 (4) ◽  
pp. 523-533 ◽  
Author(s):  
Emmanuel Mongodin ◽  
Odile Bajolet ◽  
Jocelyne Hinnrasky ◽  
Edith Puchelle ◽  
Sophie de Bentzmann

Staphylococcus aureus is a common human pathogen involved in non-bronchial diseases and in genetic and acquired bronchial diseases. In this study, we applied an immunolabeling approach for in vivo and in vitro detection of S. aureus, based on the affinity of staphylococcal protein A (SpA) for the Fc region of immunoglobulins, especially IgG. Most strains of S. aureus, including clinical strains, can be detected with this labeling technique. The approach can be used for detection and localization with transmission electron microscopy or light-fluorescence microscopy of S. aureus in infected tissues such as human bronchial tissue from cystic fibrosis (CF) patients. The methodology can also be applied to cell culture models with the aim of characterizing bacterial adherence to epithelial cells in backscattered electron imaging with scanning electron microscopy. Application to the study of S. aureus adherence to airway epithelium showed that the bacteria did not adhere in vivo to intact airway epithelium. In contrast, bacteria adhered to the basolateral plasma membrane of columnar cells, to basal cells, to the basement membrane and were identified beneath the lamina propria when the epithelium was injured and remodeled, or in vitro when the epithelial cells were dedifferentiated.


1984 ◽  
Vol 99 (1) ◽  
pp. 53-57 ◽  
Author(s):  
E de Harven ◽  
R Leung ◽  
H Christensen

A method is described for the use of scanning electron microscopy on the surface of gold-labeled cells. It includes the use of 45- or 20-nm colloidal gold marker conjugated with Staphylococcal protein A. The marker is best recognized on the basis of its atomic number contrast by using the backscattered electron imaging mode of the scanning electron microscope. When the backscattered electron signal is mixed with the secondary electron signal, an optimum correlation between the distribution of the labeled sites and the cell surface structures is demonstrated. The method is illustrated by its application to the identification of human circulating granulocytes. Its good resolution, high contrast, and good labeling efficiency offers a promising approach to the specific localization of cell surface antigenic sites labeled with particles of colloidal gold.


1982 ◽  
Vol 30 (12) ◽  
pp. 1313-1319 ◽  
Author(s):  
G Schwendemann ◽  
J S Wolinsky ◽  
G Hatzidimitriou ◽  
D C Merz ◽  
M N Waxham

A postembedding method is described to localize antigens specific for various paramyxoviruses in sections of cells and tissues that have been fixed and embedded in epoxy resins for conventional electron microscopy. Viral antigens were localized in CV-1 cell cultures infected with simian virus 5 (SV5), brains of suckling hamsters inoculated with either neuroadapted mumps virus or hamster-adapted measles virus, and brains of adult mice infected with Sendai (parainfluenza I) virus. Both 1-micrometer-thick and thin (gold) tissue sections were etched with alcoholic sodium hydroxide-solution and then treated following either the unlabeled antibody peroxidase-antiperoxidase or the biotinylated protein A:avidin peroxidase procedure. Primary reagents included immunoglobulin isolated from hyperimmune rabbit sera with specificity to the major viral components of SV5 or SV5 hemagglutinin-neuraminidase, to whole mumps virus or mumps virus nucleocapsids, and to whole Sendai virus. Crude rabbit anti-Sendai virus antiserum and whole human subacute sclerosing panencephalitis (SSPE) sera were used in parallel. The results indicate that tissues processed for conventional evaluation by electron microscopy may be suitable, within limits, for postembedding immunocytochemical staining of paramyxovirus antigens.


Foods ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2426
Author(s):  
Yanwei Ji ◽  
Lili Chen ◽  
Yingying Wang ◽  
Kaihui Zhang ◽  
Haofen Wu ◽  
...  

Staphylococcal enterotoxins (SEs) represent the leading reason for staphylococcal food poisoning (SFP) and various other diseases. Reports often indicate Staphylococcal enterotoxin C (SEC) as the most frequently found enterotoxin in dairy products. To minimize consumer exposure to SEC, this paper aimed to create a sandwich enzyme-linked immunosorbent assay (ELISA) based on nanobodies (sandwich Nbs-ELISA) to accurately detect SEC in dairy products without the influence of staphylococcal protein A (SpA). Therefore, after inoculating a Bactrian camel with SEC, a phage display Nb library was created. Eleven Nbs against SEC were identified in three biopanning steps. Based on their affinity and pairing level, a sandwich Nbs-ELISA was developed using the C6 anti-SEC Nb as the capture antibody, while the detection antibody was represented by the C11 phage display anti-SEC Nb. In optimal conditions, the quantitative range of the present sandwich ELISA was 4-250 ng/mL with a detection limit (LOD) of 2.47 ng/mL, obtained according to the blank value plus three standard deviations. The developed technique was subjected to specific measurements, revealing minimal cross-reactivity with Staphylococcus aureus (S. aureus), Staphylococcal enterotoxin A (SEA), Staphylococcal enterotoxin B (SEB), and SpA. The proposed method exhibited high specificity and an excellent recovery rate of 84.52~108.06% in dairy products. Therefore, the sandwich Nbs-ELISA showed significant potential for developing a specific, sensitive technique for SEC detection in dairy products.


2021 ◽  
Vol 8 ◽  
Author(s):  
Alexis Berger ◽  
Patricia Blackwelder ◽  
Tamara Frank ◽  
Tracey T. Sutton ◽  
Nina M. Pruzinsky ◽  
...  

The pelagic tunicate pyrosome,Pyrosoma atlanticum, is known for its brilliant bioluminescence, but the mechanism causing this bioluminescence has not been fully characterized. This study identifies the bacterial bioluminescent symbionts ofP. atlanticumcollected in the northern Gulf of Mexico using several methods such as light and electron microscopy, as well as molecular genetics. The bacteria are localized within the pyrosome light organs. Greater than 50% of the bacterial taxa present in the tunicate samples were the bioluminescent symbiotic bacteria Vibrionaceae as determined by utilizing current molecular genetics methodologies. A total of 396K MiSeq16S rRNA reads provided total pyrosome microbiome profiles to determine bacterial symbiont taxonomy. After comparing with the Silva rRNA database, aPhotobacteriumsp. r33-like bacterium (which we refer to as “PhotobacteriumPa-1”) matched at 99% sequence identity as the most abundant bacteria withinPyrosoma atlanticumsamples. Specifically designed 16S rRNA V4 probes for fluorescencein situhybridization (FISH) verified thePhotobacteriumPa-1 location as internally concentrated along the periphery of each dual pyrosome luminous organ. While searching for bacterialluxgenes in two tunicate samples, we also serendipitously generated a draft tunicate mitochondrial genome that can be used forPyrosoma atlanticumidentification. Scanning (SEM) and transmission (TEM) electron microscopy confirmed the presence of intracellular rod-like bacteria in the light organs. This intracellular localization of bacteria may represent bacteriocyte formation reminiscent of other invertebrates.


Author(s):  
Odell T. Minick ◽  
Hidejiro Yokoo ◽  
Fawzia Batti

Vacuolated cells in the liver of young rats were studied by light and electron microscopy following the administration of vitamin A (200 units per gram of body weight). Their characteristics were compared with similar cells found in untreated animals.In rats given vitamin A, cells with vacuolated cytoplasm were a prominent feature. These cells were found mostly in a perisinusoidal location, although some appeared to be in between liver cells (Fig. 1). Electron microscopy confirmed their location in Disse's space adjacent to the sinusoid and in recesses between liver cells. Some appeared to be bordering the lumen of the sinusoid, but careful observation usually revealed a tenuous endothelial process separating the vacuolated cell from the vascular space. In appropriate sections, fenestrations in the thin endothelial processes were noted (Fig. 2, arrow).


Sign in / Sign up

Export Citation Format

Share Document