scholarly journals Microscopic and Genetic Characterization of Bacterial Symbionts With Bioluminescent Potential in Pyrosoma atlanticum

2021 ◽  
Vol 8 ◽  
Author(s):  
Alexis Berger ◽  
Patricia Blackwelder ◽  
Tamara Frank ◽  
Tracey T. Sutton ◽  
Nina M. Pruzinsky ◽  
...  

The pelagic tunicate pyrosome,Pyrosoma atlanticum, is known for its brilliant bioluminescence, but the mechanism causing this bioluminescence has not been fully characterized. This study identifies the bacterial bioluminescent symbionts ofP. atlanticumcollected in the northern Gulf of Mexico using several methods such as light and electron microscopy, as well as molecular genetics. The bacteria are localized within the pyrosome light organs. Greater than 50% of the bacterial taxa present in the tunicate samples were the bioluminescent symbiotic bacteria Vibrionaceae as determined by utilizing current molecular genetics methodologies. A total of 396K MiSeq16S rRNA reads provided total pyrosome microbiome profiles to determine bacterial symbiont taxonomy. After comparing with the Silva rRNA database, aPhotobacteriumsp. r33-like bacterium (which we refer to as “PhotobacteriumPa-1”) matched at 99% sequence identity as the most abundant bacteria withinPyrosoma atlanticumsamples. Specifically designed 16S rRNA V4 probes for fluorescencein situhybridization (FISH) verified thePhotobacteriumPa-1 location as internally concentrated along the periphery of each dual pyrosome luminous organ. While searching for bacterialluxgenes in two tunicate samples, we also serendipitously generated a draft tunicate mitochondrial genome that can be used forPyrosoma atlanticumidentification. Scanning (SEM) and transmission (TEM) electron microscopy confirmed the presence of intracellular rod-like bacteria in the light organs. This intracellular localization of bacteria may represent bacteriocyte formation reminiscent of other invertebrates.

Author(s):  
J. A. Pollock ◽  
M. Martone ◽  
T. Deerinck ◽  
M. H. Ellisman

Localization of specific proteins in cells by both light and electron microscopy has been facilitate by the availability of antibodies that recognize unique features of these proteins. High resolution localization studies conducted over the last 25 years have allowed biologists to study the synthesis, translocation and ultimate functional sites for many important classes of proteins. Recently, recombinant DNA techniques in molecular biology have allowed the production of specific probes for localization of nucleic acids by “in situ” hybridization. The availability of these probes potentially opens a new set of questions to experimental investigation regarding the subcellular distribution of specific DNA's and RNA's. Nucleic acids have a much lower “copy number” per cell than a typical protein, ranging from one copy to perhaps several thousand. Therefore, sensitive, high resolution techniques are required. There are several reasons why Intermediate Voltage Electron Microscopy (IVEM) and High Voltage Electron Microscopy (HVEM) are most useful for localization of nucleic acids in situ.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 446
Author(s):  
Ioannis Spanos ◽  
Zacharias Vangelatos ◽  
Costas Grigoropoulos ◽  
Maria Farsari

The need for control of the elastic properties of architected materials has been accentuated due to the advances in modelling and characterization. Among the plethora of unconventional mechanical responses, controlled anisotropy and auxeticity have been promulgated as a new avenue in bioengineering applications. This paper aims to delineate the mechanical performance of characteristic auxetic and anisotropic designs fabricated by multiphoton lithography. Through finite element analysis the distinct responses of representative topologies are conveyed. In addition, nanoindentation experiments observed in-situ through scanning electron microscopy enable the validation of the modeling and the observation of the anisotropic or auxetic phenomena. Our results herald how these categories of architected materials can be investigated at the microscale.


2016 ◽  
Vol 106 (2) ◽  
pp. 142-154 ◽  
Author(s):  
J. M. Cicero ◽  
T. W. Fisher ◽  
J. K. Brown

The potato psyllid Bactericera cockerelli is implicated as the vector of the causal agent of zebra chip of potato and vein-greening of tomato diseases. Until now, visual identification of bacteria in the genus ‘Candidatus Liberibacter’ has relied on direct imaging by light and electron microscopy without labeling, or with whole-organ fluorescence labeling only. In this study, aldehyde fixative followed by a coagulant fixative, was used to process adult psyllids for transmission electron microscopy (TEM) colloidal gold in situ hybridization experiments. Results indicated that ‘Ca. Liberibacter solanacearum’ (CLso)-specific DNA probes annealed to a bacterium that formed extensive, monocultural biofilms on gut, salivary gland, and oral region tissues, confirming that it is one morphotype of potentially others, that is rod-shaped, approximately 2.5 µm in diameter and of variable length, and has a rough, granular cytosol. In addition, CLso, prepared from shredded midguts, and negatively stained for TEM, possessed pili- and flagella-like surface appendages. Genes implicating coding capacity for both types of surface structures are encoded in the CLso genome sequence. Neither type was seen for CLso associated with biofilms within or on digestive organs, suggesting that their production is stimulated only in certain environments, putatively, in the gut during adhesion leading to multiplication, and in hemolymph to afford systemic invasion.


2011 ◽  
Vol 135 (4) ◽  
pp. 503-510
Author(s):  
Darcy A Kerr ◽  
Vincent A Memoli ◽  
Sara S Cathey ◽  
Brent T Harris

Abstract We report findings from an autopsy of a 45-year-old woman with the rare lysosomal storage disease mucolipidosis type III α/β. Her disease manifested most notably as multiple bone and cartilage problems with tracheal and bronchial malacia. Principal autopsy findings included gross abnormalities in bone and cartilage with corresponding microscopic cytoplasmic lysosomal granules. These cytoplasmic granules were also seen in histologic preparations of the brain, myocardium, heart valves, and fibroblasts of the liver and skin by light and electron microscopy. By electron microscopy there were scattered, diffuse vesicular cytoplasmic granules in neurons and glia and an increase in lysosomal structures with fine electron lucent granularity in the above tissue types. Our findings help elaborate current understanding of this disease and differentiate it from the mucopolysaccharidoses and related disorders. To our knowledge, this is the first report to document pathologic findings in a patient with mucolipidosis type III α/β by autopsy.


Sign in / Sign up

Export Citation Format

Share Document