Improved method for making high-affinity sections of soft tissue embedded in polyethylene glycol (PEG): its use in screening monoclonal antibodies.

1986 ◽  
Vol 34 (9) ◽  
pp. 1237-1241 ◽  
Author(s):  
J B Bard ◽  
A S Ross

This article describes improvements in the immunohistologic technique for embedding highly hydrated embryonic tissue in polyethylene glycol 1000 (PEG)--a water-soluble wax of melting point 39 degrees C--and compares the PEG sections with frozen and polyester-wax sections. The main improvement ensures that relatively large PEG sections (8 X 3 mm) stretch out and adhere well to slides: a coat of albumen and glycerine is dried onto the slides and a fresh coat applied just before use. The embedding, sectioning, and mounting procedures, which are considerably faster than those for wax processing, have been developed for screening monoclonal antibodies against the differentiated neural crest cells in the anterior eyes of 9-day-old chick embryos. PEG sections of such eyes were a little fragile, but showed good cellular detail, similar to or better than in wax sections and considerably better than in frozen sections. The responses of PEG sections to the antibodies were far stronger than those of wax and marginally better than those of frozen sections. In one experiment using 125I-labeled rabbit anti-mouse antibody on sections previously treated with antibodies or antisera, PEG sections bound about five times as much label as wax sections and approximately 30% more than frozen sections. The main limitation of the technique is that, because of the softness of PEG, it only works well for embedding a limited range of tissues. Such PEG sections may, however, be useful for in situ hybridization as well as for immunohistochemistry.

2009 ◽  
Vol 53 (7) ◽  
pp. 3138-3139 ◽  
Author(s):  
Boris V. Nikonenko ◽  
Venkata M. Reddy ◽  
Marina Protopopova ◽  
Elena Bogatcheva ◽  
Leo Einck ◽  
...  

ABSTRACT New delivery vehicles and routes of delivery were developed for the capuramycin analogue SQ641. While this compound has remarkable in vitro potency against Mycobacterium tuberculosis, it has low solubility in water and poor intracellular activity. We demonstrate here that SQ641 dissolved in the water-soluble vitamin E analogue α-tocopheryl polyethylene glycol 1000 succinate (TPGS) or incorporated into TPGS-micelles has significant activity in a mouse model of tuberculosis.


Author(s):  
P.R. Swann ◽  
A.E. Lloyd

Figure 1 shows the design of a specimen stage used for the in situ observation of phase transformations in the temperature range between ambient and −160°C. The design has the following features a high degree of specimen stability during tilting linear tilt actuation about two orthogonal axes for accurate control of tilt angle read-out high angle tilt range for stereo work and habit plane determination simple, robust construction temperature control of better than ±0.5°C minimum thermal drift and transmission of vibration from the cooling system.


TAPPI Journal ◽  
2011 ◽  
Vol 10 (4) ◽  
pp. 29-33
Author(s):  
LEE A. GOETZ ◽  
AJI P. MATHEW ◽  
KRISTIINA OKSMAN ◽  
ARTHUR J. RAGAUSKAS

The thermal stability and decomposition of in-situ crosslinked nanocellulose whiskers – poly(methyl vinyl ether-co-maleic acid) – polyethylene glycol formulations (PMVEMA-PEG), (25%, 50%, and 75% whiskers) – were investigated using thermal gravimetric analysis (TGA) methods. The thermal degradation behavior of the films varied according to the percent cellulose whiskers in each formulation. The presence of cellulose whiskers increased the thermal stability of the PMVEMA-PEG matrix.


1964 ◽  
Vol 45 (4) ◽  
pp. 535-559 ◽  
Author(s):  
E. Bolté ◽  
S. Mancuso ◽  
G. Eriksson ◽  
N. Wiqvist ◽  
E. Diczfalusy

ABSTRACT In 15 cases of therapeutic abortion by laparotomy the placenta was disconnected from the foetus and perfused in situ with tracer amounts of radioactive dehydroepiandrosterone (DHA), dehydroepiandrosterone sulphate (DHAS), androst-4-ene-3,17-dione (A), testosterone (T) and 17β-oestradiol (OE2). Analysis of the placentas, perfusates and urine samples revealed an extensive aromatisation of DHA, A and T; more than 70% of the radioactive material recovered was phenolic, and at least 80 % of this phenolic material was identified as oestrone (OE1), 17β-oestradiol (OE2) and oestriol (OE3), the latter being detected only in the urine. Comparative studies indicated that A and T were aromatised somewhat better than DHA and that all three unconjugated steroids were aromatised to a much greater extent than DHAS. Radioactive OE1 and OE2 were isolated and identified in the placentas and perfusates, but no OE3, epimeric oestriols, or ring D ketols could be detected in these sources, not even when human chorionic gonadotrophin (HCG) was added to the blood prior to perfusion. Lack of placental 16-hydroxylation was also apparent when OE2 was perfused. Regardless of the precursor perfused, there was three times more OE2 than OE1 in the placenta and three times more OE1 than OE2 in the perfusate. This was also the case following perfusion with OE2. The results are interpreted as suggesting the existence in the pregnant human of a placental »barrier« limiting the passage of circulating androgen. The barrier consists of a) limited ability to transfer directly DHAS and b) an enzymic mechanism resulting in the rapid and extensive aromatisation of the important androgens DHA, A and T.


Author(s):  
Ain Uddin ◽  
Weifan Sang ◽  
Yong Gao ◽  
Kyle Plunkett

The synthesis of poly(p-xylylene)s (PPXs) with sidechains containing alkyl bromide functionality, and their post-polymer modification, is described. The PPXs were prepared by a diimide hydrogenation of poly(p-phenylene vinylene)s (PPVs) that were originally synthesized by a Gilch polymerization. The polymer backbone reduction was carried out with hydrazine hydrate in toluene at 80 °C to provide polymers with the sidechain-containing bromide functionality intact. To demonstrate post-polymer modification of the sidechains, the resulting PPX polymers were modified with trimethylamine to form tetraalkylammonium ion functionality and were evaluated as anion conducting membranes. While PPX homopolymers containing tetralkylammonium ions were completely water soluble and not able to form valuable films, PPX copolymers containing mixed tetraalkylammonium ions and hydrophobic chains were capable of film formation and alkaline stability. In addition, an in situ crosslinking process that used N,N,N',N'-tetramethyl-1,6-hexanediamine during the tetraalkylammonium formation of brominated PPX polymers was also evaluated and gave reasonable films with conductivities of ~10 mS-cm-1.


2019 ◽  
Author(s):  
Ain Uddin ◽  
Weifan Sang ◽  
Yong Gao ◽  
Kyle Plunkett

The synthesis of poly(p-xylylene)s (PPXs) with sidechains containing alkyl bromide functionality, and their post-polymer modification, is described. The PPXs were prepared by a diimide hydrogenation of poly(p-phenylene vinylene)s (PPVs) that were originally synthesized by a Gilch polymerization. The polymer backbone reduction was carried out with hydrazine hydrate in toluene at 80 °C to provide polymers with the sidechain-containing bromide functionality intact. To demonstrate post-polymer modification of the sidechains, the resulting PPX polymers were modified with trimethylamine to form tetraalkylammonium ion functionality and were evaluated as anion conducting membranes. While PPX homopolymers containing tetralkylammonium ions were completely water soluble and not able to form valuable films, PPX copolymers containing mixed tetraalkylammonium ions and hydrophobic chains were capable of film formation and alkaline stability. In addition, an in situ crosslinking process that used N,N,N',N'-tetramethyl-1,6-hexanediamine during the tetraalkylammonium formation of brominated PPX polymers was also evaluated and gave reasonable films with conductivities of ~10 mS-cm-1.


2000 ◽  
Vol 41 (4-5) ◽  
pp. 301-308 ◽  
Author(s):  
N. Noda ◽  
H. Ikuta ◽  
Y. Ebie ◽  
A. Hirata ◽  
S. Tsuneda ◽  
...  

Fluorescent antibody technique by the monoclonal antibody method is very useful and helpful for the rapid quantification and in situ detection of the specific bacteria like nitrifiers in a mixed baxterial habitat such as a biofilm. In this study, twelve monoclonal antibodies against Nitrosomonas europaea (IFO14298) and sixteen against Nitrobacter winogradskyi (IFO14297) were raised from splenocytes of mice (BALB/c). It was found that these antibodies exhibited little cross reactivity against various kinds of heterotrophic bacteria. The direct cell count method using monoclonal antibodies could exactly detect and rapidly quantify N. europaea and N. winogradskyi. Moreover, the distribution of N. europaea and N. winogradskyi in a biofilm could be examined by in situ fluorescent antibody technique. It was shown that most of N. winogradskyi existed near the surface part and most of N. europaea existed at the inner part of the polyethylene glycol (PEG) gel pellet, which had entrapped activated sludge and used in a landfill leachate treatment reactor. It was suggested that this monoclonal antibody method was utilized for estimating and controlling the population of nitrifying bacteria as a quick and favorable tool.


2018 ◽  
Vol 18 (8) ◽  
pp. 1138-1147 ◽  
Author(s):  
Esra Metin ◽  
Pelin Mutlu ◽  
Ufuk Gündüz

Background: Although conventional chemotherapy is the most common method for cancer treatment, it has several side effects such as neuropathy, alopecia and cardiotoxicity. Since the drugs are given to body systemically, normal cells are also affected, just like cancer cells. However, in recent years, targeted drug delivery has been developed to overcome these drawbacks. Objective: The aim of this study was targeted co-delivery of doxorubicin (Dox) which is an anticancer agent and D-α-Tocopherol polyethylene glycol 1000 succinate (vitamin E TPGS or simply TPGS) to breast cancer cells. For this purpose, Magnetic Nanoparticles (MNPs) were synthesized and coated with Oleic Acid (OA). Coated nanoparticles were encapsulated in Poly Lactic-co-Glycolic Acid (PLGA) and TPGS polymers and loaded with Dox. The Nanoparticles (NPs) were characterized by Fourier Transform Infrared (FTIR) spectroscopy, zetapotential analysis, Dynamic Light Scattering (DLS) analysis, Thermal Gravimetric Analysis (TGA) and Scanning Electron Microscope (SEM) analysis. Results: The results showed that NPs were spherical, superparamagnetic and in the desired range for use in drug targeting. The targetability of NPs was confirmed. Moreover, TPGS and Dox loading was shown by TGA and FTIR analyses. NPs were internalized by cells and the cytotoxic effect of drug loaded NPs on sensitive (MCF-7) and drug-resistant (MCF-7/Dox) cells were examined. It was seen that the presence of TPGS increased cytotoxicity significantly. TPGS also enhanced drug loading efficiency, release rate, cellular internalization. In MCF- 7/Dox cells, the drug resistance seems to be decreased when Dox is loaded onto TPGS containing NPs. Conclusion: This magnetic PLGA nanoparticle system is important for new generation targeted chemotherapy and could be used for breast cancer treatment after in vivo tests.


Sign in / Sign up

Export Citation Format

Share Document