Dimensional stabilization of wood with water soluble fire retardant bulking chemicals compared with polyethylene glycol-1000

1974 ◽  
Vol 8 (4) ◽  
pp. 300-306 ◽  
Author(s):  
Alfred J. Stamm
1986 ◽  
Vol 34 (9) ◽  
pp. 1237-1241 ◽  
Author(s):  
J B Bard ◽  
A S Ross

This article describes improvements in the immunohistologic technique for embedding highly hydrated embryonic tissue in polyethylene glycol 1000 (PEG)--a water-soluble wax of melting point 39 degrees C--and compares the PEG sections with frozen and polyester-wax sections. The main improvement ensures that relatively large PEG sections (8 X 3 mm) stretch out and adhere well to slides: a coat of albumen and glycerine is dried onto the slides and a fresh coat applied just before use. The embedding, sectioning, and mounting procedures, which are considerably faster than those for wax processing, have been developed for screening monoclonal antibodies against the differentiated neural crest cells in the anterior eyes of 9-day-old chick embryos. PEG sections of such eyes were a little fragile, but showed good cellular detail, similar to or better than in wax sections and considerably better than in frozen sections. The responses of PEG sections to the antibodies were far stronger than those of wax and marginally better than those of frozen sections. In one experiment using 125I-labeled rabbit anti-mouse antibody on sections previously treated with antibodies or antisera, PEG sections bound about five times as much label as wax sections and approximately 30% more than frozen sections. The main limitation of the technique is that, because of the softness of PEG, it only works well for embedding a limited range of tissues. Such PEG sections may, however, be useful for in situ hybridization as well as for immunohistochemistry.


2009 ◽  
Vol 53 (7) ◽  
pp. 3138-3139 ◽  
Author(s):  
Boris V. Nikonenko ◽  
Venkata M. Reddy ◽  
Marina Protopopova ◽  
Elena Bogatcheva ◽  
Leo Einck ◽  
...  

ABSTRACT New delivery vehicles and routes of delivery were developed for the capuramycin analogue SQ641. While this compound has remarkable in vitro potency against Mycobacterium tuberculosis, it has low solubility in water and poor intracellular activity. We demonstrate here that SQ641 dissolved in the water-soluble vitamin E analogue α-tocopheryl polyethylene glycol 1000 succinate (TPGS) or incorporated into TPGS-micelles has significant activity in a mouse model of tuberculosis.


2018 ◽  
Vol 18 (8) ◽  
pp. 1138-1147 ◽  
Author(s):  
Esra Metin ◽  
Pelin Mutlu ◽  
Ufuk Gündüz

Background: Although conventional chemotherapy is the most common method for cancer treatment, it has several side effects such as neuropathy, alopecia and cardiotoxicity. Since the drugs are given to body systemically, normal cells are also affected, just like cancer cells. However, in recent years, targeted drug delivery has been developed to overcome these drawbacks. Objective: The aim of this study was targeted co-delivery of doxorubicin (Dox) which is an anticancer agent and D-α-Tocopherol polyethylene glycol 1000 succinate (vitamin E TPGS or simply TPGS) to breast cancer cells. For this purpose, Magnetic Nanoparticles (MNPs) were synthesized and coated with Oleic Acid (OA). Coated nanoparticles were encapsulated in Poly Lactic-co-Glycolic Acid (PLGA) and TPGS polymers and loaded with Dox. The Nanoparticles (NPs) were characterized by Fourier Transform Infrared (FTIR) spectroscopy, zetapotential analysis, Dynamic Light Scattering (DLS) analysis, Thermal Gravimetric Analysis (TGA) and Scanning Electron Microscope (SEM) analysis. Results: The results showed that NPs were spherical, superparamagnetic and in the desired range for use in drug targeting. The targetability of NPs was confirmed. Moreover, TPGS and Dox loading was shown by TGA and FTIR analyses. NPs were internalized by cells and the cytotoxic effect of drug loaded NPs on sensitive (MCF-7) and drug-resistant (MCF-7/Dox) cells were examined. It was seen that the presence of TPGS increased cytotoxicity significantly. TPGS also enhanced drug loading efficiency, release rate, cellular internalization. In MCF- 7/Dox cells, the drug resistance seems to be decreased when Dox is loaded onto TPGS containing NPs. Conclusion: This magnetic PLGA nanoparticle system is important for new generation targeted chemotherapy and could be used for breast cancer treatment after in vivo tests.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 628
Author(s):  
Im-Sook Song ◽  
So-Jeong Nam ◽  
Ji-Hyeon Jeon ◽  
Soo-Jin Park ◽  
Min-Koo Choi

We evaluated the bioavailability, liver distribution, and efficacy of silymarin-D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) solid dispersion (silymarin-SD) in rats with acetaminophen-induced hepatotoxicity (APAP) compared with silymarin alone. The solubility of silybin, the major and active component of silymarin, in the silymarin-SD group increased 23-fold compared with the silymarin group. The absorptive permeability of silybin increased by 4.6-fold and its efflux ratio decreased from 5.5 to 0.6 in the presence of TPGS. The results suggested that TPGS functioned as a solubilizing agent and permeation enhancer by inhibiting efflux pump. Thus, silybin concentrations in plasma and liver were increased in the silymarin-SD group and liver distribution increased 3.4-fold after repeated oral administration of silymarin-SD (20 mg/kg as silybin) for five consecutive days compared with that of silymarin alone (20 mg/kg as silybin). Based on higher liver silybin concentrations in the silymarin-SD group, the therapeutic effects of silymarin-SD in hepatotoxic rats were evaluated and compared with silymarin administration only. Elevated alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase levels were significantly decreased by silymarin-SD, silymarin, and TPGS treatments, but these decreases were much higher in silymarin-SD animals than in those treated with silymarin or TPGS. In conclusion, silymarin-SD (20 mg/kg as silybin, three times per day for 5 days) exhibited hepatoprotective properties toward hepatotoxic rats and these properties were superior to silymarin alone, which may be attributed to increased solubility, enhanced intestinal permeability, and increased liver distribution of the silymarin-SD formulation.


Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1915 ◽  
Author(s):  
Eyob Wondu ◽  
Hyun Woo Oh ◽  
Jooheon Kim

In this study water-soluble polyurethane (WSPU) was synthesized from isophorone diisocyanate (IPDI), and polyethylene glycol (PEG), 2-bis(hydroxymethyl) propionic acid or dimethylolpropionic acid (DMPA), butane-1,4-diol (BD), and triethylamine (TEA) using an acetone process. The water solubility was investigated by solubilizing the polymer in water and measuring the contact angle and the results indicated that water solubility and contact angle tendency were increased as the molecular weight of the soft segment decreased, the amount of emulsifier was increased, and soft segment to hard segment ratio was lower. The contact angle of samples without emulsifier was greater than 87°, while that of with emulsifier was less than 67°, indicating a shift from highly hydrophobic to hydrophilic. The WSPU was also analyzed using Fourier transform infrared spectroscopy (FT-IR) to identify the absorption of functional groups and further checked by X-ray photoelectron spectroscopy (XPS). The molecular weight of WSPU was measured using size-exclusion chromatography (SEC). The structure of the WSPU was confirmed by nuclear magnetic resonance spectroscopy (NMR). The thermal properties of WSPU were analyzed using thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC).


Sign in / Sign up

Export Citation Format

Share Document