scholarly journals Carbonic anhydrase III in skeletal muscle fibers: an immunocytochemical and biochemical study.

1988 ◽  
Vol 36 (7) ◽  
pp. 775-782 ◽  
Author(s):  
P Frémont ◽  
P M Charest ◽  
C Côté ◽  
P A Rogers

The objectives of the present study were to determine if carbonic anhydrase III (CA III) demonstrated a specific association for any particular organelle or structure of the skeletal muscle cell and to quantify the activity and content of this enzyme in different types of skeletal muscle fibers. Ultrastructural localization of CA III in the soleus (SOL), deep vastus lateralis (DVL), and superficial vastus lateralis (SVL), composed of predominantly type I, IIa, and IIb fibers, respectively, was performed using a high-resolution immunocytochemical technique and antibody specific for CA III on ultra-thin sections of skeletal muscle embedded in the water-soluble medium polyvinyl alcohol (PVA). The results indicated a uniform distribution of CA III within the sarcomere. Mitochondria, nuclei, triads, Z-, and M-bands were not specifically labeled. Immunoblotting of washed myofibril preparations did not show any detectable CA III associated with this structure. In addition to quantification of the immunogold labeling, CA III activity and content were assayed in the post-mitochondrial supernatant of the three muscles. In the SOL, these values were found to be 3.6-7.6 times higher than in the DVL. The SVL showed a labeling intensity slightly higher than background level, while the enzyme activity and content were indistinguishable from background levels. We therefore conclude that CA III is randomly distributed in the cytoplasm of the three muscle fiber types and that the relative CA III content and activity in the three muscles studied is SOL greater than DVL greater than SVL approximately equal to 0.

2009 ◽  
Vol 107 (4) ◽  
pp. 1138-1143 ◽  
Author(s):  
Martijn A. Bekedam ◽  
Brechje J. van Beek-Harmsen ◽  
Willem van Mechelen ◽  
Anco Boonstra ◽  
Willem J. van der Laarse

The purpose of this study was to determine the myoglobin concentration in skeletal muscle fibers of chronic heart failure (CHF) patients and to calculate the effect of myoglobin on oxygen buffering and facilitated diffusion. Myoglobin concentration, succinate dehydrogenase (SDH) activity, and cross-sectional area of individual muscle fibers from the vastus lateralis of five control and nine CHF patients were determined using calibrated histochemistry. CHF patients compared with control subjects were similar with respect to myoglobin concentration: type I fibers 0.69 ± 0.11 mM (mean ± SD), type II fibers 0.52 ± 0.07 mM in CHF vs. type I fibers 0.70 ± 0.09 mM, type II fibers 0.49 ± 0.07 mM in control, whereas SDH activity was significantly lower in CHF in both fiber types ( P < 0.01). The myoglobin concentration in type I fibers was higher than in type II fibers ( P < 0.01). Consequently, the oxygen buffering capacity, calculated from myoglobin concentration/SDH activity was increased in CHF: type I fibers 11.4 ± 2.1 s, type II fibers 13.6 ± 3.9 s in CHF vs. type I fibers 7.8 ± 0.9 s, type II fibers 7.5 ± 1.0 s in control, all P < 0.01). The calculated extracellular oxygen tension required to prevent core anoxia (Po2crit) in muscle fibers was similar when controls were compared with patients in type I fibers 10.3 ± 0.9 Torr in CHF and 11.5 ± 3.3 Torr in control, but was lower in type II fibers of patients 6.1 ± 2.8 Torr in CHF and 14.7 ± 6.2 Torr in control, P < 0.01. The lower Po2crit of type II fibers may facilitate oxygen extraction from capillaries. Reduced exercise tolerance in CHF is not due to myoglobin deficiency.


Author(s):  
I. Taylor ◽  
P. Ingram ◽  
J.R. Sommer

In studying quick-frozen single intact skeletal muscle fibers for structural and microchemical alterations that occur milliseconds, and fractions thereof, after electrical stimulation, we have developed a method to compare, directly, ice crystal formation in freeze-substituted thin sections adjacent to all, and beneath the last, freeze-dried cryosections. We have observed images in the cryosections that to our knowledge have not been published heretofore (Figs.1-4). The main features are that isolated, sometimes large regions of the sections appear hazy and have much less contrast than adjacent regions. Sometimes within the hazy regions there are smaller areas that appear crinkled and have much more contrast. We have also observed that while the hazy areas remain still, the regions of higher contrast visibly contract in the beam, often causing tears in the sections that are clearly not caused by ice crystals (Fig.3, arrows).


1999 ◽  
Vol 276 (2) ◽  
pp. R559-R565 ◽  
Author(s):  
Claude H. Côté ◽  
Fabrisia Ambrosio ◽  
Guylaine Perreault

Carbonic anhydrase (CA) III is very abundant in type I skeletal muscle, but its function is still debated. Our aims were to examine CA III expression during growth and determine whether the effects of CA inhibition previously observed in adult muscles could be seen in younger rats in which CA III levels are lower. CA III content and activity were measured in soleus muscles from 10- to 100-day-old rats, and the influence of CA inhibitor on fatigue and hexosemonophosphate content was quantified in vitro. CA III activity and content increased fivefold between 10 and 100 days of age. Data analysis revealed that the influence of CA inhibitor on fatigue was to some extent positively and linearly related to the level of CA III activity. Hexosemonophosphate accumulation with CA inhibition also became more significant with age. In conclusion, CA III level in soleus muscle does not stabilize before 3 mo after birth; data also confirm that the effects of CA inhibitors are due to inhibition of the CA III isoform.


1986 ◽  
Vol 34 (4) ◽  
pp. 513-516 ◽  
Author(s):  
S Jeffery ◽  
N D Carter ◽  
A Smith

Specific antisera were raised against the three carbonic anhydrase (CA) isozymes, CAI, CAII, and CAIII, and were used to determine the fiber distribution of these isozymes in skeletal muscle. Fiber types were determined by ATPase staining, and the CA isozymes were detected using a peroxidase-anti-peroxidase (PAP) technique. All three isozymes were present in type I fibers; CAII and CAIII were exclusive to these fibers, and CAI were also present in some small type 2A fibers.


2005 ◽  
Vol 126 (5) ◽  
pp. 461-480 ◽  
Author(s):  
Lucas G. Prado ◽  
Irina Makarenko ◽  
Christian Andresen ◽  
Martina Krüger ◽  
Christiane A. Opitz ◽  
...  

The active and passive contractile performance of skeletal muscle fibers largely depends on the myosin heavy chain (MHC) isoform and the stiffness of the titin spring, respectively. Open questions concern the relationship between titin-based stiffness and active contractile parameters, and titin's importance for total passive muscle stiffness. Here, a large set of adult rabbit muscles (n = 37) was studied for titin size diversity, passive mechanical properties, and possible correlations with the fiber/MHC composition. Titin isoform analyses showed sizes between ∼3300 and 3700 kD; 31 muscles contained a single isoform, six muscles coexpressed two isoforms, including the psoas, where individual fibers expressed similar isoform ratios of 30:70 (3.4:3.3 MD). Gel electrophoresis and Western blotting of two other giant muscle proteins, nebulin and obscurin, demonstrated muscle type–dependent size differences of ≤70 kD. Single fiber and single myofibril mechanics performed on a subset of muscles showed inverse relationships between titin size and titin-borne tension. Force measurements on muscle strips suggested that titin-based stiffness is not correlated with total passive stiffness, which is largely determined also by extramyofibrillar structures, particularly collagen. Some muscles have low titin-based stiffness but high total passive stiffness, whereas the opposite is true for other muscles. Plots of titin size versus percentage of fiber type or MHC isoform (I-IIB-IIA-IID) determined by myofibrillar ATPase staining and gel electrophoresis revealed modest correlations with the type I fiber and MHC-I proportions. No relationships were found with the proportions of the different type II fiber/MHC-II subtypes. Titin-based stiffness decreased with the slow fiber/MHC percentage, whereas neither extramyofibrillar nor total passive stiffness depended on the fiber/MHC composition. In conclusion, a low correlation exists between the active and passive mechanical properties of skeletal muscle fibers. Slow muscles usually express long titin(s), predominantly fast muscles can express either short or long titin(s), giving rise to low titin-based stiffness in slow muscles and highly variable stiffness in fast muscles. Titin contributes substantially to total passive stiffness, but this contribution varies greatly among muscles.


1998 ◽  
Vol 84 (1) ◽  
pp. 229-235 ◽  
Author(s):  
L. V. Thompson ◽  
J. A. Shoeman

Thompson, L. V., and J. A. Shoeman. Contractile function of single muscle fibers after hindlimb unweighting in aged rats. J. Appl. Physiol. 84(1): 229–235, 1998.—This investigation determined how muscle atrophy produced by hindlimb unweighting (HU) alters the contractile function of single muscle fibers from older animals (30 mo). After 1 wk of HU, small bundles of fibers were isolated from the soleus muscles and the deep region of the lateral head of the gastrocnemius muscles. Single glycerinated fibers were suspended between a motor lever and force transducer, functional properties were studied, and the myosin heavy chain (MHC) composition was determined electrophoretically. After HU, the diameter of type I MHC fibers of the soleus declined (88 ± 2 vs. 80 ± 4 μm) and reductions were observed in peak active force (47 ± 3 vs. 28 ± 3 mg) and peak specific tension (Po; 80 ± 5 vs. 56 ± 5 kN/m2). The maximal unloaded shortening velocity increased. The type I MHC fibers from the gastrocnemius showed reductions in diameter (14%), peak active force (41%), and Po (24%), whereas the type IIa MHC fibers showed reductions in peak active force and Po. Thus 1 wk of inactivity has a significant effect on the force-generating capacity of single skeletal muscle fibers from older animals in a fiber type-specific manner (type I MHC > type IIa MHC > type I-IIa MHC). The decline in the functional properties of single skeletal muscle fibers in the older animals appears to be more pronounced than what has been reported in younger animal populations.


1987 ◽  
Vol 104 (4) ◽  
pp. 967-979 ◽  
Author(s):  
DA Schafer ◽  
FE Stockdale

We have identified three sarcolemma-associated antigens, including two antigens that are differentially distributed on skeletal muscle fibers of the fast, fast/slow, and slow types. Monoclonal antibodies were prepared using partially purified membranes of adult chicken skeletal muscles as immunogens and were used to characterize three antigens associated with the sarcolemma of muscle fibers. Immunofluorescence staining of cryosections of adult and embryonic chicken muscles showed that two of the three antigens differed in expression by fibers depending on developmental age and whether the fibers were of the fast, fast/slow, or slow type. Fiber type was assigned by determining the content of fast and slow myosin heavy chain. MSA-55 was expressed equally by fibers of all types. In contrast, MSA-slow and MSA-140 differed in their expression by muscle fibers depending on fiber type. MSA-slow was detected exclusively at the periphery of fast/slow and slow fibers, but was not detected on fast fibers. MSA-140 was detected on all fibers but fast/slow and slow fibers stained more intensely suggesting that these fiber types contain more MSA-140 than fast fibers. These sarcolemma-associated antigens were developmentally regulated in ovo and in vitro. MSA-55 and MSA-140 were detected on all primary muscle fibers by day 8 in ovo of embryonic development, whereas MSA-slow was first detected on muscle fibers just before hatching. Those antigens expressed by fast fibers (MSA-55 and MSA-140) were expressed only after myoblasts differentiated into myotubes, but were not expressed by fibroblasts in cell culture. Each antigen was also detected in one or more nonskeletal muscle cell types: MSA-55 and MSA-slow in cardiac myocytes and smooth muscle of gizzard (but not vascular structures) and MSA-140 in cardiac myocytes and smooth muscle of vascular structures. MSA-55 was identified as an Mr 55,000, nonglycosylated, detergent-soluble protein, and MSA-140 was an Mr 140,000, cell surface protein. The Mr of MSA-slow could not be determined by immunoblotting or immunoprecipitation techniques. These findings indicate that muscle fibers of different physiological function differ in the components associated with the sarcolemma. While the function of these sarcolemma-associated antigens is unknown, their regulated appearance during development in ovo and as myoblasts differentiate in culture suggests that they may be important in the formation, maturation, and function of fast, fast/slow, and slow muscle fibers.


1967 ◽  
Vol 26 (3) ◽  
pp. 475-497 ◽  
Author(s):  
HAROLD M. PRICE ◽  
GERALD B. GORDON ◽  
THEODORE L. MUNSAT ◽  
CARL M. PEARSON

Sign in / Sign up

Export Citation Format

Share Document