scholarly journals Islet morphogenesis and stem cell markers in rat pancreas.

1996 ◽  
Vol 44 (9) ◽  
pp. 947-951 ◽  
Author(s):  
L Bouwens ◽  
E De Blay

During embryonic development, and possibly also later in life, pancreatic islets of Langerhans originate from differentiating epithelial stem cells. These stem cells are situated in the pancreatic ducts but are otherwise poorly characterized. We found by immunohistochemical staining that protodifferentiated pancreatic epithelial cells from rat embryos of Day 13-Day 15 express the cytoskeletal protein keratin 20, similar to mature duct epithelium. During the period of islet morphogenesis, which occurs between Day 17 and birth, large aggregates of K20-positive duct cells were formed, which gradually differentiated into endocrine cells. This islet morphogenic mechanism has not been described thus far and we did not observe it in postnatal rats. During fetal islet formation, transient expression of vimentin was noted in the duct cells but not in endocrine cells. This intermediate filament protein is not observed in duct epithelial cells after birth. The proto-oncogene product bcl-2, a putative epithelial stem cell marker, was detected in duct cells from fetal and postnatal pancreas. We conclude that K20, vimentin, and bcl-2 are markets for the pancreatic (islet) stem cells.

Microscopy ◽  
2021 ◽  
Author(s):  
Nobuyuki Koike ◽  
Jun Sugimoto ◽  
Motonori Okabe ◽  
Kenichi Arai ◽  
Makiko Nogami ◽  
...  

Abstract Amnion membrane studies related to miscarriage have been conducted in the field of obstetrics and gynecology. However, the distribution of stem cells within the amnion and the differences in the properties of each type of stem cells are still not well understood. We address this gap in knowledge in the present study where we morphologically classified the amnion membrane, and we clarified the distribution of stem cells here to identify functionally different amniotic membrane–derived stem cells. The amnion can be divided into a site that is continuous with the umbilical cord (region A), a site that adheres to the placenta (region B), and a site that is located opposite the placenta (region C). We found that human amnion epithelial stem cells (HAECs) that strongly express stem cell markers were abundant in area A. HAEC not only expressesed stem cell-specific surface markers TRA-1-60, Tra-1-81, SSEA4, SSEA3, but was also OCT-3/4 positive and had alkaline phosphatase activity. Human amniotic mesenchymal stem cells expressed KLF-A, OCTA, Oct3/4, c-MYC and Sox2 which is transcription factor. Especially, in regions A and B they have expressed CD73, and the higher expression of BCRP which is drug excretion transporter protein than the other parts. These data suggest that different types of stem cells may have existed in different area. The understanding the relation with characteristics of the stem cells in each area and function would allow for the efficient harvest of suitable HAE and HAM stem cells as using tool for regenerative medicine.


Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1134
Author(s):  
Julia I. Khorolskaya ◽  
Daria A. Perepletchikova ◽  
Daniel V. Kachkin ◽  
Kirill E. Zhurenkov ◽  
Elga I. Alexander-Sinkler ◽  
...  

The development of cell-based approaches to the treatment of various cornea pathologies, including limbal stem cell deficiency (LSCD), is an area of current interest in regenerative biomedicine. In this context, the shortage of donor material is urgent, and limbal mesenchymal stem cells (L-MSCs) may become a promising cell source for the development of these novel approaches, being established mainly within the rabbit model. In this study, we obtained and characterized rabbit L-MSCs and modified them with lentiviral transduction to express the green fluorescent protein EGFP (L-MSCs-EGFP). L-MSCs and L-MSCs-EGFP express not only stem cell markers specific for mesenchymal stem cells but also ABCG2, ABCB5, ALDH3A1, PAX6, and p63a specific for limbal epithelial stem cells (LESCs), as well as various cytokeratins (3/12, 15, 19). L-MSCs-EGFP have been proven to differentiate into adipogenic, osteogenic, and chondrogenic directions, as well as to transdifferentiate into epithelial cells. The possibility of using L-MSCs-EGFP to study the biocompatibility of various scaffolds developed to treat corneal pathologies was demonstrated. L-MSCs-EGFP may become a useful tool for studying regenerative processes occurring during the treatment of various corneal pathologies, including LSCD, with the use of cell-based technologies.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1677-1677
Author(s):  
Toska J. Zomorodian ◽  
Debbie Greer ◽  
Kyle Wood ◽  
Bethany Foster ◽  
Delia Demers ◽  
...  

Abstract Transplanted bone marrow donor cells with tissue specific phenotypes have been found in the brain, liver, heart, skin, lung, kidney, and gut of transplanted humans and mice. Such observations have led to the controversial hypothesis that hematopoietic stem cells (HSC) might be intrinsically plastic, and through transdifferentiation or fusion lead to the repair of damaged tissues throughout the body. Alternately, it is suggested that fusion of macrophages to the recipient cells may explain this phenomenon. We have shown recently that purified HSC are the cells responsible for GFP positive donor-derived muscle fibers in the recipient mice post bone marrow transplantation. However, further studies sorting for macrophage markers Mac-1 and F4/80 also resulted in donor-derived muscle fibers in the host. To address this discrepancy, we investigated subpopulations of Mac-1 and F4/80 positive cells, in the presence or absence of stem cell markers (Sca-1 and C-kit). We demonstrate that only the subpopulations of Mac-1 and F4/80 positive cells harboring stem cell markers, Sca-1 or c-kit, were capable of contributing to the regenerating muscle post transplantation. Furthermore, these same subpopulations demonstrated single cell High Proliferative Potential (HPP) (6–26%) in a 7 factor cytokine cocktail, compared to the Mac-1 or F4/80 cells with no stem cell markers (0%). Additionally, they demonstrated long-term engraftment in all three lineages at 1-year (average chimerism of 55% versus 0% in stem cell marker negative groups). These subpopulations were also evaluated for morphology using Hematoxylin/Eosin (H/E), Wright-Giemsa, and Nonspecific Esterase staining. In the Mac-1 and F4/80 positive groups, those negative for stem cell markers resembled differentiated cells of the myeloid origin (macrophages, granulocytes), while those with positive stem cell markers demonstrated stem cell characteristics. We did not observe any engraftability, donor-derived muscle fibers, or HPP potential for CD14 or cfms positive cells coexpressing stem cell markers, indicating that these markers are more appropriate for identifying macrophages. In conclusion, our studies demonstrate that both Mac-1 and F4/80 surface markers are present on HSC and therefore caution must be taken in the interpretation of data using these macrophage markers. It is reasonable to believe that the use of Mac-1 and/or F4/80 surface markers in a lineage depletion process may result in the loss of a subpopulation of stem cells, and other markers such as CD14 or c-fms may be more appropriate for eliminating differentiated macrophages.


2009 ◽  
Vol 296 (2) ◽  
pp. C296-C305 ◽  
Author(s):  
S. Samuel ◽  
R. Walsh ◽  
J. Webb ◽  
A. Robins ◽  
C. Potten ◽  
...  

Colonic epithelial stem cells are believed to be located at the crypt base where they have previously been shown to express musashi-1. The colonic stem cell niche, which includes extracellular matrix and myofibroblasts (together with other cell types), is likely to be important in maintaining the function of the progenitor cells. The aims of our studies were to characterize stem cells in isolated and disaggregated human colonic crypt epithelial cells and investigate their interactions with monolayers of primary human colonic myofibroblasts. In unfractionated preparations of disaggregated colonic crypts, musashi-1 positive cells preferentially adhered to colonic myofibroblasts, despite the presence of excess blocking anti-β1-integrin antibody. These adherent epithelial cells remained viable for a number of days and developed slender processes. Cells with side population characteristics (as demonstrated by ability to expel the dye Hoechst 33342) were consistently seen in the isolated colonic crypt epithelial cells. These side population cells expressed musashi-1, β1-integrin, BerEP4, and CD133. Sorted side population crypt epithelial cells also rapidly adhered to primary colonic myofibroblasts. In conclusion, in preparation of isolated and disaggregated human colonic crypts, cells with stem cell characteristics preferentially adhere to primary human colonic myofibroblasts in a β1-integrin-independent fashion.


2014 ◽  
Vol 998-999 ◽  
pp. 312-315
Author(s):  
Fan Wang ◽  
Bo Ren ◽  
Yi Ning Yan

Purpose: The adult corneal epithelium is maintained by a population of limbal stem cells (LSCs), transmembrane protein prominin, regarded as stem cell marker was investigated on mouse corneal tissue, to study weather contains CD133-expressing cells and their distribution. Methods: Enucleated mouse eyes were embedded in OCT and cryosections were performed for mmunohistochemical studies using the avidin-biotin-peroxidase complex (ABC) procedure. Meanwhile, dissected mouse corneas were analyzed by westernblot. Results: In the adult mouse, 13A4 immunoreactivity was detected at the apical side of superficial corneal epithelium, including the limbus region, but not by stroma and endothelium. 115 KDa protein was approved in corneal tissue by Westernblot. Conclusions: The stem cell activity does not occur along the limbus but presumably presented by small portion of corneal epithelial cells which may hold a similar properties of stem cells.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4303-4303
Author(s):  
Laura R. Goldberg ◽  
Mark S Dooner ◽  
Yanhui Deng ◽  
Elaine Papa ◽  
Mandy Pereira ◽  
...  

Abstract The study of highly purified hematopoietic stem cells (HSCs) has dominated the field of hematopoietic stem cell biology. It is widely believed that the true stem cell population lies within the Lineage negative (Lin-) population, further sub-fractionated using positive and negative selection for surface markers such as c-Kit, Sca-1, CD150, CD41, CD48, and CD34. It is research on these highly purified subsets of HSCs that forms the foundation for almost all our knowledge of HSCs, and has led to the dogma that marrow stem cells are quiescent with a stable phenotype and therefore can be purified to near homogeneity. In contrast, we have shown that a large percentage of long-term multi-lineage marrow repopulating cells in whole bone marrow (WBM) are actively cycling, that these cycling stem cells are lost during conventional HSC isolation, and that they can be found, in part, within the discarded Lineage positive (Lin+) population. Here we present data further characterizing the stem cell potential in the Lin+ fraction. We incubated WBM from B6.SJL mice with fluorescently tagged antibodies directed against TER119, B220, or T-cell markers (CD3, CD4, CD8), isolated the distinct Lin+ subsets by FACS, and then competitively engrafted each Lin+ subset into lethally irradiated C57BL/6 host mice. Donor chimerism and lineage specificity of donor cells in peripheral blood were analyzed by flow cytometry at 3 months. Although classically considered devoid of stem cell activity, we found that, when competed against equal numbers of C57BL/6 WBM, the TER119+ and B220+ B6.SJL donor cells contributed to 33% and 13% of the peripheral blood chimerism, respectively. In both cases, the engraftment was multi-lineage. When 70,000 T cell marker+ donor cells were competed with 300,000 C57BL/6 WBM, the donor cells contributed up to 1.6% of the peripheral blood multi-lineage chimerism. Given the size of the Lin+ fraction in WBM, such chimerism indicates a significant stem cell potential within this typically discarded population. Further time-points, secondary transplants and limited dilution studies are in progress to further define the prevalence and potency of this stem cell population. We have been testing mechanisms governing the loss of this stem cell population during HSC purification. First, we have previously shown that bulk Lin+ engraftment potential is due to cycling stem cells. We hypothesize that fluctuations in surface epitope expression with cell cycle transit render this population difficult to isolate with antibody-mediated strategies that rely on stable epitope expression. To begin testing this, we tracked the fluctuation of stem cell markers on Lin- cells in vitro. We isolated Lin- cells that were also negative for the stem cell markers c-Kit and Sca-1, placed them in liquid culture and, 18 hours later, re-assessed for stem cell marker expression by flow cytometry. We found that, although initially stem cell marker negative, up to 6%, 14%, and 2% of the Lin-/stem cell marker negative cells became positive for c-Kit alone, Sca-1 alone, or both c-Kit and Sca-1 expression, respectively. We are currently testing this population for a correlation between gain of c-Kit- and Sca-1 expression and stem cell function. Second, it is possible that there is a distinct subset of HSCs that are positive for both Lin+ markers and stem cell markers with stable stem cell capacity and that these distinct stem cells are thrown out in the process of lineage depletion. To begin testing this hypothesis, we have simultaneously stained WBM with antibodies directed against the Lin+ markers and conventional stem cell markers. Our preliminary data indicate that each Lin+ fraction tested to date has a subpopulation that is also positive for c-Kit and Sca-1. For example, 21% of CD3+ cells, 6.2% of CD4+ cells, 2.26% of CD8+ cells, 0.5% of B220+, and 0.45% of TER119+ cells express both c-Kit and Sca-1. We suspect these two populations have distinct functional phenotypes and experiments characterizing the molecular phenotype and engraftment capacity of these subpopulations are ongoing. In sum, our data indicate that stem cell purification skews isolation towards a small population of quiescent stem cells, underrepresenting a potentially large pool of actively cycling HSCs that are found within the Lin+ fraction. These data underscore the need to re-evaluate the total hematopoietic stem cell potential in marrow on a population level. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Author(s):  
Mohammed Zayed ◽  
Koichiro Iohara ◽  
Hideto Watanabe ◽  
Mami Ishikawa ◽  
Michiyo Tominaga ◽  
...  

Abstract Background: Dental pulp stem cells (DPSCs) have been developed as a potential source of mesenchymal stem cells (MSCs) for regeneration of dental pulp and other tissues. However, further strategies to isolate highly functional DPSCs beyond the colony-forming methods are required. Our clinical study has demonstrated safety and efficacy of DPSCs isolated by G-CSF-induced mobilization and cultured under normoxia (mobilized DPSCs, MDPSCs) for pulp regeneration. It is well known that the oxygen concentration is closely linked to the maintenance of stemness. Thus, in this investigation, hypoxia-preconditioned DPSCs (hpDPSCs) was characterized to develop and improve the clinical utility for regeneration of dental pulp in endodontics.Methods: Colony-forming DPSCs were isolated and preconditioned with hypoxia in a stable closed cultured system and compared with MDPSCs isolated from the individual dog teeth. We examined the proliferation rate, migration potential, anti-apoptotic activity and gene expression of the stem cell markers and angiogenic/neurotrophic factors. Trophic effects of the conditioned medium (CM) were also evaluated. In addition, the expression of immunomodulatory molecules upon stimulation with IFN-γ were investigated. The pulp regenerative potential and transplantation safety of hpDPSCs were further assessed in pulpectomized teeth in dogs by histological and immunohistochemical analyses and by chemistry of blood and urine. tests Results: hpDPSCs demonstrated higher proliferation rate and expression of a major regulator of oxygen homeostasis, HIF-1α, and a stem cell marker, CXCR-4. The direct migratory activity of hpDPSCs in response to G-CSF was significantly higher than MDPSCs. The CM of hpDPSCs stimulated neurite extension. However, there were no changes in angiogenic, migration and anti-apoptotic activities compared with the CM of MDPSCs. The expression of immunomodulatory gene, PTGE was significantly up-regulated by IFN gamma in hpDPSCs compared with MDPSCs. However, no difference in nitric oxide was observed. The regenerated pulp tissue was quantitatively and qualitatively similar in hpDPSC transplants compared with MDPSC transplants in dog teeth. There was no evidence of toxicity or adverse events of the hpDPSC transplantation Conclusions: These results demonstrated that hpDPSCs improved stem cell properties compared to MDPSCs, suggesting their potential clinical utility for pulp regeneration.


2018 ◽  
Vol 19 (10) ◽  
pp. 3240 ◽  
Author(s):  
Nicola Tempest ◽  
Alison Maclean ◽  
Dharani Hapangama

The human endometrium is a highly regenerative organ undergoing over 400 cycles of shedding and regeneration over a woman’s lifetime. Menstrual shedding and the subsequent repair of the functional layer of the endometrium is a process unique to humans and higher-order primates. This massive regenerative capacity is thought to have a stem cell basis, with human endometrial stromal stem cells having already been extensively studied. Studies on endometrial epithelial stem cells are sparse, and the current belief is that the endometrial epithelial stem cells reside in the terminal ends of the basalis glands at the endometrial/myometrial interface. Since almost all endometrial pathologies are thought to originate from aberrations in stem cells that regularly regenerate the functionalis layer, expansion of our current understanding of stem cells is necessary in order for curative treatment strategies to be developed. This review critically appraises the postulated markers in order to identify endometrial stem cells. It also examines the current evidence supporting the existence of epithelial stem cells in the human endometrium that are likely to be involved both in glandular regeneration and in the pathogenesis of endometrial proliferative diseases such as endometriosis and endometrial cancer.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Shaokun Zhang ◽  
Zaoxia Liu ◽  
Guanfang Su ◽  
Hong Wu

The limbal epithelial cells can be maintained on 3T3 feeder layer with fetal bovine serum supplemented culture medium, and these cells have been used to successfully treat limbal stem cell deficiency. However, fetal bovine serum contains unknown components and displays quantitative and qualitative lot-to-lot variations. To improve the culture condition, the defined KnockOut serum replacement was investigated to replace fetal bovine serum for culturing human limbal epithelial cell. Human primary limbal epithelial cells were cultured in KnockOut serum and fetal bovine serum supplemented medium, respectively. The cell growth rate, gene expression, and maintenance of limbal epithelial stem cells were studied and compared between these two groups. Human primary limbal epithelial cells were isolated and successfully serially cultivated in this novel KnockOut serum supplemented medium; the cell proliferation and stem cell maintenance were similar to those of cells grown in fetal bovine serum supplemented medium. These data suggests that this KnockOut serum supplemented medium is an efficient replacement to traditional fetal bovine serum supplemented medium for limbal epithelial cell culture, and this medium has great potential for long term maintenance of limbal epithelial cells, limbal epithelial stem cells transplantation, and tissue regeneration.


Sign in / Sign up

Export Citation Format

Share Document