Tool‐path generation method for sheet metal incremental forming process

2011 ◽  
Vol 15 (sup1) ◽  
pp. s278-s282 ◽  
Author(s):  
M Li ◽  
L Zhang ◽  
J Mo ◽  
G Liu
2012 ◽  
Vol 503-504 ◽  
pp. 35-39 ◽  
Author(s):  
Hu Zhu ◽  
Wen Wen Lin ◽  
Jin Lan Bai

The sheet metal CNC incremental forming is a flexible dieless forming technology that forms a sheet part by extruding the sheet metal point by point with the movement of forming tool along the forming path. The tool paths therefore have a great effect on the dimensional accuracy, surface quality and forming time. In this paper, an overview of the research status about the forming tool path generation for sheet metal CNC incremental forming is presented briefly.


2011 ◽  
Vol 239-242 ◽  
pp. 1036-1039
Author(s):  
Liu Ru Zhou

The principle of NC incremental sheet metal forming as well as the process planning, experiment of sphere forming are presented. Because the deformation of sheet metal only occurs around the tool head and the deformed region is subjected to shear deformation and thins, and surface area increases. Sheet metal forming stepwise is to lead to the whole sheet metal deformation. According to sine law, a sphere can’t be formed by NC incremental sheet metal forming process in a single process, rather, it must be formed in multi processes. Thus, the two time path process method is presented to form the sphere, and the experiment is made to verify it. A sphere can be formed from a sheet metal in NC incremental forming process by choosing appropriate tool-path planning. The fracture in the forming component can be avoided by these methods. A sphere of uniform wall-thickness can be formed from the truncated cone by NC incremental forming process.


2013 ◽  
Vol 554-557 ◽  
pp. 1375-1381 ◽  
Author(s):  
Laurence Giraud-Moreau ◽  
Abel Cherouat ◽  
Jie Zhang ◽  
Houman Borouchaki

Recently, new sheet metal forming technique, incremental forming has been introduced. It is based on using a single spherical tool, which is moved along CNC controlled tool path. During the incremental forming process, the sheet blank is fixed in sheet holder. The tool follows a certain tool path and progressively deforms the sheet. Nowadays, numerical simulations of metal forming are widely used by industry to predict the geometry of the part, stresses and strain during the forming process. Because incremental forming is a dieless process, it is perfectly suited for prototyping and small volume production [1, 2]. On the other hand, this process is very slow and therefore it can only be used when a slow series production is required. As the sheet incremental forming process is an emerging process which has a high industrial interest, scientific efforts are required in order to optimize the process and to increase the knowledge of this process through experimental studies and the development of accurate simulation models. In this paper, a comparison between numerical simulation and experimental results is realized in order to assess the suitability of the numerical model. The experimental investigation is realized using a three-axis CNC milling machine. The forming tool consists in a cylindrical rotating punch with a hemispherical head. A subroutine has been developed to describe the tool path from CAM procedure. A numerical model has been developed to simulate the sheet incremental forming process. The finite element code Abaqus explicit has been used. The simulation of the incremental forming process stays a complex task and the computation time is often prohibitive for many reasons. During this simulation, the blank is deformed by a sequence of small increments that requires many numerical increments to be performed. Moreover, the size of the tool diameter is generally very small compared to the size of the metal sheet and thus the contact zone between the tool and the sheet is limited. As the tool deforms almost every part of the sheet, small elements are required everywhere in the sheet resulting in a very high computation time. In this paper, an adaptive remeshing method has been used to simulate the incremental forming process. This strategy, based on adaptive refinement and coarsening procedures avoids having an initially fine mesh, resulting in an enormous computing time. Experiments have been carried out using aluminum alloy sheets. The final geometrical shape and the thickness profile have been measured and compared with the numerical results. These measurements have allowed validating the proposed numerical model. References [1] M. Yamashita, M. Grotoh, S.-Y. Atsumi, Numerical simulation of incremental forming of sheet metal, J. Processing Technology, No. 199 (2008), p. 163 172. [2] C. Henrard, A.M. Hbraken, A. Szekeres, J.R. Duflou, S. He, P. Van Houtte, Comparison of FEM Simulations for the Incremental Forming Process, Advanced Materials Research, 6-8 (2005), p. 533-542.


2018 ◽  
Vol 783 ◽  
pp. 148-153
Author(s):  
Muhammad Sajjad ◽  
Jithin Ambarayil Joy ◽  
Dong Won Jung

Incremental sheet metal forming, is a non-conventional machining process which offers higher formability, flexibility and low cost of production than the traditional conventional forming process. Punch or tool used in this forming process consecutively forces the sheet to deform locally and ultimately gives the target profile. Various machining parameters, such as type of tool, tool path, tool size, feed rate and mechanical properties of sheet metal, like strength co-efficient, strain hardening index and ultimate tensile strength, effects the forming process and the formability of final product. In this research paper, Single Point Incremental Forming was simulated using Dassault system’s Abaqus 6.12-1 and results are obtained. Results of sheet profile and there change in thickness is investigated. For this paper, we simulated the process in abaqus. The tool diameter and rotational speed is find out for the production of parts through incremental forming. The simulation is done for two type of material with different mechanical properties. Various research papers were used to understand the process of incremental forming and its simulation.


Author(s):  
Zachary C. Reese ◽  
Brandt J. Ruszkiewicz ◽  
Chetan P. Nikhare ◽  
John T. Roth

Incremental forming is a nontraditional forming method in which a spherical tool is used to asymmetrically deform sheet metal without the need for expensive allocated dies. Incremental forming employs a tool path similar to that used when CNC milling. Hence, when forming a part, the forming tool makes a series of passes circumferentially around the workpiece, gradually spirally stepping down in the z-axis on each sequential pass. This tool path deforms the sheet metal stock into the final, desired shape. These passes can start from the outer radius of the part and work in (Out to In, OI forming) or they can start from the center of the shape and work outward (In to Out, IO forming). As with many sheet metal operations, springback is a big concern during the incremental forming process. During the deformation process, residual stresses are created within the workpiece causing the final formed shape to springback when it is unclamped, sometimes very significantly. The more complex the geometry of the final part and the more total deformation that occurs when forming the geometry, the greater the residual stresses that are generated within the part. The residual stresses that have built up in the piece cause more significant distortion to the part when it is released from the retaining fixturing. This paper examines how the step size (in the z direction), OI vs. IO forming, and final part geometry affect the total springback in a finished piece. For all of these tests 0.5 mm thick sheets of 2024-T3 aluminum were used to form both the truncated pyramid and truncated cone shape. From this investigation it was found that smaller step sizes result in greater springback, IO is significantly less effective in forming the part (due to workpiece tearing), and final part geometry plays an important role due to the creation of residual stresses that exist in corners.


Sign in / Sign up

Export Citation Format

Share Document