scholarly journals Three-dimensional visualisation of fatigue cracks in metals using high resolution synchrotron X-ray micro-tomography

2006 ◽  
Vol 22 (9) ◽  
pp. 1019-1024 ◽  
Author(s):  
J. Y. Buffiere ◽  
E. Ferrie ◽  
H. Proudhon ◽  
W. Ludwig
IAWA Journal ◽  
2013 ◽  
Vol 34 (4) ◽  
pp. 408-424 ◽  
Author(s):  
Craig R. Brodersen

High-resolution X-ray micro-tomography (μCT) has emerged as one of the most promising new tools available to wood anatomists to study the three-dimensional organization of xylem networks. This non-destructive method faithfully reproduces the spatial relationships between the different cell types and allows the user to explore wood anatomy in new and innovative ways. With μCT imaging, the sample can be visualized in any plane and is not limited to a single section or exposed plane. Conventional CT software aids in the visualization of wood structures, and newly developed custom software can be used to rapidly automate the data extraction process, thereby accelerating the rate at which samples can be analyzed for research. In this review the origins of xylem reconstructions using traditional methods are discussed, as well as the current applications of μCT in plant biology and an overview of pertinent technical considerations associated with this technique. μCT imaging offers a new perspective on wood anatomy and highlights the importance of the relationships between wood structure and function.


1988 ◽  
Vol 21 (4) ◽  
pp. 429-477 ◽  
Author(s):  
W. Kühlbrandt

As recently as 10 years ago, the prospect of solving the structure of any membrane protein by X-ray crystallography seemed remote. Since then, the threedimensional (3-D) structures of two membrane protein complexes, the bacterial photosynthetic reaction centres of Rhodopseudomonas viridis (Deisenhofer et al. 1984, 1985) and of Rhodobacter sphaeroides (Allen et al. 1986, 1987 a, 6; Chang et al. 1986) have been determined at high resolution. This astonishing progress would not have been possible without the pioneering work of Michel and Garavito who first succeeded in growing 3-D crystals of the membrane proteins bacteriorhodopsin (Michel & Oesterhelt, 1980) and matrix porin (Garavito & Rosenbusch, 1980). X-ray crystallography is still the only routine method for determining the 3-D structures of biological macromolecules at high resolution and well-ordered 3-D crystals of sufficient size are the essential prerequisite.


2003 ◽  
Vol 8 (1) ◽  
pp. 2-6 ◽  
Author(s):  
Wolfgang H Stuppy ◽  
Jessica A Maisano ◽  
Matthew W Colbert ◽  
Paula J Rudall ◽  
Timothy B Rowe

2018 ◽  
Vol 139 ◽  
pp. 75-82 ◽  
Author(s):  
A.H. Galmed ◽  
A. du Plessis ◽  
S.G. le Roux ◽  
E. Hartnick ◽  
H. Von Bergmann ◽  
...  

2017 ◽  
Vol 77 (11) ◽  
pp. 447-455 ◽  
Author(s):  
Chun Tan ◽  
Sohrab Randjbar Daemi ◽  
Daniel J.L. Brett ◽  
Paul R. Shearing

2010 ◽  
pp. 109-117 ◽  
Author(s):  
Neda Motchurova-Dekova ◽  
David Harper

Synchrotron radiation X-ray tomographic microscopy (SRXTM) is a non-destructive technique for the investigation and visualization of the internal features of solid opaque objects, which allows reconstruction of a complete three-dimensional image of internal structures by recording of the differences in the effects on the passage of waves of energy reacting with those structures. Contrary to X-rays, produced in a conventional X-ray tube, the intense synchrotron light beams are sharply focused like a laser beam. We report encouraging results from the use of SRXTM for purely taxonomic purposes in brachiopods: an attempt to find a non-destructive and more efficient alternative to serial sectioning and several other methods of dissection together with the non-destructive method of X-ray computerised micro-tomography. Two brachiopod samples were investigated using SRXTM. In ?Rhynchonella? flustracea it was possible to visualise the 3D shape of the crura and dental plates. In Terebratulina imbricata it was possible to reveal the form of the brachidium. It is encouraging that we have obtained such promising results using SRXTM with our very first two fortuitous samples, which had respectively fine-grained limestone and marl as infilling sediment, in contrast to the discouraging results communicated to us by some colleagues who have tested specimens with such infillings using X-ray micro-tomography. In future the holotypes, rare museum specimens or delicate Recent material may be preferentially subjected to this mode of analysis.


MRS Bulletin ◽  
1988 ◽  
Vol 13 (1) ◽  
pp. 13-18 ◽  
Author(s):  
J.H. Kinney ◽  
Q.C. Johnson ◽  
U. Bonse ◽  
M.C. Nichols ◽  
R.A. Saroyan ◽  
...  

Imaging is the cornerstone of materials characterization. Until the middle of the present century, visible light imaging provided much of the information about materials. Though visible light imaging still plays an extremely important role in characterization, relatively low spatial resolution and lack of chemical sensitivity and specificity limit its usefulness.The discovery of x-rays and electrons led to a major advance in imaging technology. X-ray diffraction and electron microscopy allowed us to characterize the atomic structure of materials. Many materials vital to our high technology economy and defense owe their existence to the understanding of materials structure brought about with these high-resolution methods.Electron microscopy is an essential tool for materials characterization. Unfortunately, electron imaging is always destructive due to the sample preparation that must be done prior to imaging. Furthermore, electron microscopy only provides information about the surface of a sample. Three dimensional information, of great interest in characterizing many new materials, can be obtained only by time consuming sectioning of an object.The development of intense synchrotron light sources in addition to the improvements in solid state imaging technology is revolutionizing materials characterization. High resolution x-ray imaging is a potentially valuable tool for materials characterization. The large depth of x-ray penetration, as well as the sensitivity of absorption crosssections to atomic chemistry, allows x-ray imaging to characterize the chemistry of internal structures in macroscopic objects with little sample preparation. X-ray imaging complements other imaging modalities, such as electron microscopy, in that it can be performed nondestructively on metals and insulators alike.


2020 ◽  
Vol 10 (14) ◽  
pp. 4898
Author(s):  
Hailing Shi ◽  
Jerome Hosdez ◽  
Thomas Rougelot ◽  
Shouyi Xie ◽  
Jianfu Shao ◽  
...  

Creep tests are commonly performed to characterize time-dependent deformation of geological materials. Classical measuring methods are not suitable for long term tests and not able to provide full three-dimensional strain fields. In this study, Digital Volume Correlation (DVC) is applied to X-ray micro-tomography (XRMT) images from creep tests on a hard clayey rock. In situ uniaxial compression creep tests are performed under different levels of stress and with different loading orientations with respect to the structural anisotropy of rock. Based on the XRMT images taken during the creep tests, DVC is applied to compute the full three dimensional strain fields and global averages strains of tested samples. The effects of bedding planes and hard inclusions on the non-uniform distribution of strains are analyzed.


2018 ◽  
Vol 3 (4) ◽  
pp. 48 ◽  
Author(s):  
Laura Maugeri ◽  
Mauro DiNuzzo ◽  
Marta Moraschi ◽  
Charles Nicaise ◽  
Inna Bukreeva ◽  
...  

Fractal analysis is a powerful method for the morphological study of complex systems that is increasingly applied to biomedical images. Spatial resolution and image segmentation are crucial for the discrimination of tissue structures at the multiscale level. In this work, we have applied fractal analysis to high-resolution X-ray phase contrast micro-tomography (XrPCμT) images in both uninjured and injured tissue of a mouse spinal cord. We estimated the fractal dimension (FD) using the box-counting method on tomographic slices segmented at different threshold levels. We observed an increased FD in the ipsilateral injured hemicord compared with the contralateral uninjured tissue, which was almost independent of the chosen threshold. Moreover, we found that images exhibited the highest fractality close to the global histogram threshold level. Finally, we showed that the FD estimate largely depends on the image histogram regardless of tissue appearance. Our results demonstrate that the pre-processing of XrPCμT images is critical to fractal analysis and the estimation of FD.


Sign in / Sign up

Export Citation Format

Share Document