scholarly journals Modelling of rotational moulding process: analysis of process parameters and warpage on cycle times

2007 ◽  
Vol 36 (10) ◽  
pp. 455-462 ◽  
Author(s):  
A. Ianakiev ◽  
K. K. Lim
Author(s):  
E Harkin-Jones ◽  
R J Crawford

The vast majority of rotationally moulded articles are produced from powdered polymers. However, the moulding process developed originally from the use of liquid polymers and nowadays there is a renewed interest in such systems because of some unique advantages that they offer. This paper compares the behaviour of three different liquid polymer systems—nylon 6 by ring-opening caprolactam, polyvinyl chloride plastisol and polyurethane. The flow behaviour of each material is examined with particular reference to wall thickness distributions and bubble formation in the product. On the basis of this, criteria for the production of fault-free mouldings have been established. The interrelationships between mould shape and resin viscosity are also examined and an ideal viscosity—time—temperature profile is proposed for liquid polymer systems. Finally, a general comparison of the materials is made with regard to material handling, safety, cycle times, etc.


2017 ◽  
Vol 21 (1) ◽  
pp. 40-46
Author(s):  
Tomasz Jachowicz ◽  
Volodymyr Krasinskyi

2013 ◽  
Vol 554-557 ◽  
pp. 1669-1682 ◽  
Author(s):  
Kam Hoe Yin ◽  
Hui Leng Choo ◽  
Dunant Halim ◽  
Chris Rudd

Process parameters optimisation has been identified as a potential approach to realise a greener injection moulding process. However, reduction in the process energy consumption does not necessarily imply a good part quality. An effective multi-response optimisation process can be demanding and often relies on extensive operational experience from human operators. Therefore, this research focuses on an attempt to develop a more user-friendly approach which could simultaneously deal with the requirements of energy efficiency and part quality. This research proposes a novel approach using a dynamic Shainin Design of Experiment (DOE) methodology to determine an optimal combination of process parameters used in the injection moulding process. The Shainin DOE method is adopted to pinpoint the most important factors on energy consumption and the targeted part quality whereas the ‘dynamic’ term refers to the signal-response system. The effectiveness of the proposed approach was illustrated by investigating the influence of various dominant parameters on the specific energy consumption (SEC) and the Charpy impact strength (CIS) of polypropylene (PP) material after being injection-moulded into impact test specimens. From the experimental results, barrel temperature was identified as the signal factor while mould temperature and cooling time were used as control factors in the full factorial experiments. Then, response function modelling (RFM) was built to characterise the signal-response relationship as a function of the control factors. Finally, RFM led to a trade-off solution where reducing part-to-part variation for CIS resulted in an increase of SEC. Therefore, the research outcomes have demonstrated that the proposed methodology can be practically applied at the factory shop floor to achieve different performance output targets specified by the customer or the manufacturer’s intent.


2019 ◽  
pp. 089270571987520
Author(s):  
Maximilian Koerdt ◽  
Michael Koerdt ◽  
Tobias Grobrüg ◽  
Marco Skowronek ◽  
Axel S Herrmann

A promising strategy to decrease cycle times for manufacturing continuous-fibre–reinforced composites is processing of thermoplastic matrix systems due to their fast processability, since no cross-linking of molecular chains is required as for thermoset resin systems. Nevertheless, thermoplastic carbon fibre-reinforced plastics nowadays are predominantly manufactured with pre-impregnated sheet materials, which result in limited drapability and freedom of design. Hybrid textiles, consisting of thermoplastic and carbon fibres, can avoid these disadvantages. This class of reinforcements combines the drapability of dry textiles with thermoplastic matrices, which furthermore allow near net-shape processes. Relative shifting between the fibres and, consequently, draping is possible in a preforming step. The objective of this article is to expand our knowledge about hybrid textiles with regard to their thermal behaviour during compression moulding. Accordingly, the necessary parameters for modelling the thermal state of the dry textile and the impregnated laminate are investigated. Moreover, an in situ process analysis based on the reflection spectra of glass fibre-optical sensors, which are embedded inside the stacking, is investigated to provide information about the state of aggregation and to validate the thermal model.


2013 ◽  
Vol 748 ◽  
pp. 544-548 ◽  
Author(s):  
Nik Mizamzul Mehat ◽  
Shahrul Kamaruddin ◽  
Abdul Rahim Othman

This paper presents the original development of an experimental approach in studying the multiple tensile characterizations as key quality characteristics for several different plastic gear materials related to various parameters in injection moulding process. In this study, emphases are given on a new low-cost mechanism for the testing of the injection moulded plastic spur gear specimens with various teeth module. The testing fixture are developed and validated to provide uniform state of tension with series of plastic gear specimens produced in accordance with the systematically designed of experiment. The effects of changes in the process parameters including melt temperature, packing pressure, packing time and cooling time at three different levels on the elongation at break and ultimate strength of plastic gear is evaluated and studied through the proposed experimental approach.


Author(s):  
Jaho Seo ◽  
Amir Khajepour ◽  
Jan P. Huissoon ◽  
Young-Jun Park

Thermal control is a key issue for injection moulding process due to its effects on production quality and rate. In this study, an on-line thermal control strategy is provided for effective thermal management in plastic injection moulding process. The strategy covers for methods in determining sensor locations as a prerequisite step for modeling and control, identifying a thermal dynamic model of a mould with uncertainties and designing a cavity wall temperature controller. A verification of the designed controller’s performance is carried out from the viewpoints of accuracy in on-line temperature tacking and response time under different injection moulding process with various cycle-times.


Sign in / Sign up

Export Citation Format

Share Document