Combined Effect of Liposomal and Conventional Amphotericin B in a Mouse Model of Systemic Infection withCandida albicans

2004 ◽  
Vol 16 (3) ◽  
pp. 255-258 ◽  
Author(s):  
M. Kretschmar ◽  
T. Bertsch ◽  
T. Nichterlein
Vaccines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1400
Author(s):  
Dennis Imhof ◽  
William Robert Pownall ◽  
Camille Monney ◽  
Anna Oevermann ◽  
Andrew Hemphill

The apicomplexan parasite Neospora caninum is the worldwide leading cause of abortion and stillbirth in cattle. An attenuated mutant Listeria monocytogenes strain (Lm3Dx) was engineered by deleting the virulence genes actA, inlA, and inlB in order to avoid systemic infection and to target the vector to antigen-presenting cells (APCs). Insertion of sag1, coding for the major surface protein NcSAG1 of N. caninum, yielded the vaccine strain Lm3Dx_NcSAG1. The efficacy of Lm3Dx_NcSAG1 was assessed by inoculating 1 × 105, 1 × 106, or 1 × 107 CFU of Lm3Dx_NcSAG1 into female BALB/c mice by intramuscular injection three times at two-week intervals, and subsequent challenge with 1 × 105N. caninum tachyzoites of the highly virulent NcSpain-7 strain on day 7 of pregnancy. Dose-dependent protective effects were seen, with a postnatal offspring survival rate of 67% in the group treated with 1 × 107 CFU of Lm3Dx_NcSAG1 compared to 5% survival in the non-vaccinated control group. At euthanasia (25 days post-partum), IgG antibody titers were significantly decreased in the groups receiving the two higher doses and cytokines recall responses in splenocyte culture supernatants (IFN-γ, IL-4, and IL-10) were increased in the vaccinated groups. Thus, Lm3Dx_NcSAG1 induces immune-protective effects associated with a balanced Th1/Th2 response in a pregnant neosporosis mouse model and should be further assessed in ruminant models.


2006 ◽  
Vol 51 (1) ◽  
pp. 23-27 ◽  
Author(s):  
Shannon M. Soltow ◽  
George M. Brenner

ABSTRACT Naegleria fowleri is responsible for producing a rapidly fatal central nervous system infection known as primary amebic meningoencephalitis (PAM). To date, amphotericin B, an antifungal agent, is the only agent with established clinical efficacy in the treatment of PAM. However, amphotericin B is not always successful in treating PAM and is associated with severe adverse effects. We previously found azithromycin to be more effective than amphotericin B in a mouse model of PAM. We therefore investigated the combination of amphotericin B and azithromycin in vitro and in a mouse model of PAM. For the in vitro studies, 50% inhibitory concentrations were calculated for each drug alone and for the drugs in fixed combination ratios of 1:1, 3:1, and 1:3. We found amphotericin B and azithromycin to be synergistic at all three of the fixed combination ratios. In our mouse model of PAM, a combination of amphotericin B (2.5 mg/kg of body weight) and azithromycin (25 mg/kg) protected 100% of the mice, whereas amphotericin B alone (2.5 mg/kg) protected only 27% of mice and azithromycin alone (25 mg/kg) protected 40% of mice. This study indicates that amphotericin B and azithromycin are synergistic against the Lee strain of N. fowleri, suggesting that the combined use of these agents may be beneficial in treating PAM.


1997 ◽  
Vol 41 (6) ◽  
pp. 1345-1348 ◽  
Author(s):  
H Sanati ◽  
C F Ramos ◽  
A S Bayer ◽  
M A Ghannoum

Although there are an increasing number of new antifungal agents available, the morbidity and mortality due to invasive mycoses remain high. The high rates of polyene toxicities and the development of azole resistance have raised the issue of using antifungal agents of these classes in combination, despite theoretical concerns regarding antagonism between such agents. This study was designed to evaluate the in vivo efficacy of combined therapy with amphotericin B and fluconazole against Candida albicans. Two distinct animal models were used in this study: a neutropenic-mouse model of hematogenously disseminated candidiasis and the infective-endocarditis rabbit model. Treatment efficacy was assessed by determining reductions in mortality as well as decreases in tissue fungal densities. In the neutropenic-mouse model, amphotericin B, as well as combination therapy, significantly prolonged survival compared to untreated controls (P < 10(-5) and P = 0.001, respectively). The fungal densities in the kidneys of neutropenic mice were significantly reduced with either amphotericin B monotherapy or amphotericin B-fluconazole combined therapy compared to those of controls (P < 10(-6)). Fluconazole monotherapy also reduced fungal densities in the kidneys; however, this decrease was not statistically significant (P = 0.17). In contrast, treatment with either fluconazole alone or combined with amphotericin B (but not amphotericin B monotherapy) significantly decreased fungal densities in the brain (P = 0.025). In the rabbit endocarditis model, amphotericin B monotherapy or combined therapy significantly decreased fungal densities in cardiac vegetations (P < 0.01 versus the controls). Although no significant antagonism was seen when fluconazole was given in combination with amphotericin B, combination therapy did not augment the antifungal activity of amphotericin B.


mBio ◽  
2019 ◽  
Vol 10 (3) ◽  
Author(s):  
R. Lu ◽  
C. Hollingsworth ◽  
J. Qiu ◽  
A. Wang ◽  
E. Hughes ◽  
...  

ABSTRACT Cryptococcus neoformans is an encapsulated yeast responsible for approximately a quarter of a million deaths worldwide annually despite therapy, and upwards of 11% of HIV/AIDS-related deaths, rivaling the impact of tuberculosis and malaria. However, the most effective antifungal agent, amphotericin B, requires intravenous delivery and has significant renal and hematopoietic toxicity, making it difficult to utilize, especially in resource-limited settings. The present studies describe a new nanoparticle crystal encapsulated formulation of amphotericin B known as encochleated amphotericin B (CAmB) that seeks to provide an oral formulation that is low in toxicity and cost. Using a 3-day delayed model of murine cryptococcal meningoencephalitis and a large inoculum of a highly virulent strain of serotype A C. neoformans, CAmB, in combination with flucytosine, was found to have efficacy equivalent to parental amphotericin B deoxycholate with flucytosine and superior to oral fluconazole without untoward toxicity. Transport of fluorescent CAmB particles to brain as well as significant brain levels of amphotericin drug was demonstrated in treated mice, and immunological profiles were similar to those of mice treated with conventional amphotericin B. Additional toxicity studies using a standardized rat model showed negligible toxicity after a 28-day treatment schedule. These studies thus offer the potential for an efficacious oral formulation of a known fungicidal drug against intrathecal cryptococcal disease. IMPORTANCE Cryptococcus neoformans is a significant global fungal pathogen that kills an estimated quarter of a million HIV-infected individuals yearly and has poor outcomes despite therapy. The most effective therapy, amphotericin B, is highly effective in killing the fungus but is available only in highly toxic, intravenous formulations that are unavailable in most of the developing world, where cryptococcal disease in most prevalent. For example, in Ethiopia, reliance on the orally available antifungal fluconazole results in high mortality, even when initiated as preemptive therapy at the time of HIV diagnosis. Thus, alternative agents could result in significant saving of lives. Toward this end, the present work describes the development of a new formulation of amphotericin B (CAmB) that encapsulates the drug as a crystal lipid nanoparticle that facilitates oral absorption and prevents toxicity. Successful oral absorption of the drug was demonstrated in a mouse model that, in combination with the antifungal flucytosine, provided efficacy equal to a parental preparation of amphotericin B plus flucytosine. These studies demonstrate the potential for CAmB in combination with flucytosine to provide an effective oral formulation of a well-known, potent fungicidal drug combination.


1999 ◽  
Vol 43 (3) ◽  
pp. 589-591 ◽  
Author(s):  
M. Lozano-Chiu ◽  
S. Arikan ◽  
V. L. Paetznick ◽  
E. J. Anaissie ◽  
D. Loebenberg ◽  
...  

ABSTRACT Doses of 10 to 100 mg of the azole antifungal agent SCH 56592/kg of body weight/day were studied in immunocompetent mice as therapy for systemic infection by Fusarium solani. Treatment was begun 1 h after intravenous infection and continued daily for 4 or 13 doses. Prolongation of survival and organ clearance were dependent on both the dose and the duration of SCH 56592 therapy, with the best results seen at 50 and 100 mg/kg/day. The results at the highest doses of SCH 56592 used (50 or 100 mg/kg/day) were comparable to those obtained with amphotericin B at 1 mg/kg/day. SCH 56592 has potential for therapy of systemic infections caused byF. solani.


2019 ◽  
Vol 93 (6) ◽  
Author(s):  
Nina C. Flerin ◽  
Ariola Bardhi ◽  
Jian Hua Zheng ◽  
Maria Korom ◽  
Joy Folkvord ◽  
...  

ABSTRACT Curing HIV infection has been thwarted by the persistent reservoir of latently infected CD4+ T cells, which reinitiate systemic infection after antiretroviral therapy (ART) interruption. To evaluate reservoir depletion strategies, we developed a novel preclinical in vivo model consisting of immunodeficient mice intrasplenically injected with peripheral blood mononuclear cells (PBMC) from long-term ART-suppressed HIV-infected donors. In the absence of ART, these mice developed rebound viremia which, 2 weeks after PBMC injection, was 1,000-fold higher (mean = 9,229,281 HIV copies/ml) in mice injected intrasplenically than in mice injected intraperitoneally (mean = 6,838 HIV copies/ml) or intravenously (mean = 591 HIV copies/ml). One week after intrasplenic PBMC injection, in situ hybridization of the spleen demonstrated extensive disseminated HIV infection, likely initiated from in vivo-reactivated primary latently infected cells. The time to viremia was delayed significantly by treatment with a broadly neutralizing antibody, 10-1074, compared to treatment with 10-1074-FcRnull, suggesting that 10-1074 mobilized Fc-mediated effector mechanisms to deplete the replication-competent reservoir. This was supported by phylogenetic analysis of Env sequences from viral-outgrowth cultures and untreated, 10-1074-treated, or 10-1074-FcRnull-treated mice. The predominant sequence cluster detected in viral-outgrowth cultures and untreated mouse plasma was significantly reduced in the plasma of 10-1074-treated mice, whereas two new clusters emerged that were not detected in viral-outgrowth cultures or plasma from untreated mice. These new clusters lacked mutations associated with 10-1074 resistance. Taken together, these data indicated that 10-1074 treatment depletes the reservoir of latently infected cells harboring replication competent HIV. Furthermore, this mouse model represents a new in vivo approach for the preclinical evaluation of new HIV cure strategies. IMPORTANCE Sustained remission of HIV infection is prevented by a persistent reservoir of latently infected cells capable of reinitiating systemic infection and viremia. To evaluate strategies to reactivate and deplete this reservoir, we developed and characterized a new humanized mouse model consisting of highly immunodeficient mice intrasplenically injected with peripheral blood mononuclear cells from long-term ART-suppressed HIV-infected donors. Reactivation and dissemination of HIV infection was visualized in the mouse spleens in parallel with the onset of viremia. The applicability of this model for evaluating reservoir depletion treatments was demonstrated by establishing, through delayed time to viremia and phylogenetic analysis of plasma virus, that treatment of these humanized mice with a broadly neutralizing antibody, 10-1074, depleted the patient-derived population of latently infected cells. This mouse model represents a new in vivo approach for the preclinical evaluation of new HIV cure strategies.


2015 ◽  
Vol 17 (1) ◽  
Author(s):  
Nadira Ruzehaji ◽  
Jerome Avouac ◽  
Muriel Elhai ◽  
Maxime Frechet ◽  
Camelia Frantz ◽  
...  

2003 ◽  
Vol 47 (6) ◽  
pp. 1948-1951 ◽  
Author(s):  
Javier Capilla ◽  
Clara Yustes ◽  
Emili Mayayo ◽  
Belkys Fernández ◽  
Montserrat Ortoneda ◽  
...  

ABSTRACT There are no effective therapeutics for treating invasive Scedosporium prolificans infections. Doses of 15, 25, and 50 mg/kg of body weight/day for the new triazole albaconazole (ABC) were evaluated in an immunocompetent rabbit model of systemic infection with this mold. Treatments were begun 1 day after challenge and given for 10 days. ABC at any dose was more effective than amphotericin B (AMB) at 0.8 mg/kg/day at clearing S. prolificans from tissue (P < 0.007). The percentages of survival at 25 mg of ABC/kg/day were similar to those obtained with AMB. Rabbits showed 100% survival when they were treated with 50 mg of ABC per kg (P < 0.0001 versus control group), and only this dosage was able to reduce tissue burden significantly in the five organs studied, i.e., spleen, kidneys, liver, lungs, and brain.


Sign in / Sign up

Export Citation Format

Share Document