Evidence of Ostwald ripening related recrystallization of diagenetic chlorites from reservoir rocks offshore Norway

Clay Minerals ◽  
1991 ◽  
Vol 26 (2) ◽  
pp. 169-178 ◽  
Author(s):  
J. S. Jahren

AbstractChemical variations in individual chlorite crystals of diagenetic origin delineated by energy dispersive X-ray spectroscopy (EDS) in a transmission electron microscope (TEM) indicate a temperature dependent chemical zonation in each grain. Silicon decreases and Al increases with higher temperature resulting in a decreasing Si/Al ratio away from the crystal core reflecting the time and rate of the crystal growth. Chlorite particle-size distributions obtained by scanning electron microscopy (SEM) give steady state profiles which suggests that the chlorite growth is controlled by a grain coarsening process related to Ostwald ripening.

1987 ◽  
Vol 111 ◽  
Author(s):  
Roseann Csencsits ◽  
Ronald Gronsky ◽  
Vinayan Nair ◽  
Rosemarie Szostak

AbstractThe effects of various synthesis conditions on the structure and composition of ferrisilicate analogs of zeolite ZSM-5 were considered. Scanning electron microscopy (SEM) was used to determine the particles size distributions and morphologies. Particle sizes vary from tenths of a micron to several microns, depending on degree of agitation during crystal growth, while morphology is additionally dependent on the concentration of iron in the gel during crystallization.X-ray emissive spectroscopy (XES) performed in the transmission electron microscope (TEM) was used to determine their composition variation. The distribution of iron amongst the crystals is more homogeneous if the gel is stirred and it does not depend on particle size.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Seyed Abolghasem Kahani ◽  
Zahra Yagini

The preparation of Fe3O4from ferrous salt by air in alkaline aqueous solution at various temperatures was proposed. The synthetic magnetites have different particle size distributions. We studied the properties of the magnetite prepared by chemical methods compared with magnetotactic bacterial nanoparticles. The results show that crystallite size, morphology, and particle size distribution of chemically prepared magnetite at 293 K are similar to biosynthesis of magnetite. The new preparation of Fe3O4helps to explain the mechanism of formation of magnetosomes in magnetotactic bacteria. The products are characterized by X-ray powder diffraction (XRD), infrared (IR) spectra, vibrating sample magnetometry (VSM), and scanning electron microscopy (SEM).


Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


Author(s):  
Vicki L. Baliga ◽  
Mary Ellen Counts

Calcium is an important element in the growth and development of plants and one form of calcium is calcium oxalate. Calcium oxalate has been found in leaf seed, stem material plant tissue culture, fungi and lichen using one or more of the following methods—polarized light microscopy (PLM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and x-ray diffraction.Two methods are presented here for qualitatively estimating calcium oxalate in dried or fixed tobacco (Nicotiana) leaf from different stalk positions using PLM. SEM, coupled with energy dispersive x-ray spectrometry (EDS), and powder x-ray diffraction were used to verify that the crystals observed in the dried leaf with PLM were calcium oxalate.


Author(s):  
William P. Wergin ◽  
P. F. Bell ◽  
Rufus L. Chaney

In dicotyledons, Fe3+ must be reduced to Fe2+ before uptake and transport of this essential macronutrient can occur. Ambler et al demonstrated that reduction along the root could be observed by the formation of a stain, Prussian blue (PB), Fe4 [Fe(CN)6]3 n H2O (where n = 14-16). This stain, which is an insoluble precipitate, forms at the reduction site when the nutrient solution contains Fe3+ and ferricyanide. In 1972, Chaney et al proposed a model which suggested that the Fe3+ reduction site occurred outside the cell membrane; however, no physical evidence to support the model was presented at that time. A more recent study using the PB stain indicates that rapid reduction of Fe3+ occurs in a region of the root containing young root hairs. Furthermore the most pronounced activity occurs in plants that are deficient in Fe. To more precisely localize the site of Fe3+ reduction, scanning electron microscopy (SEM), x-ray analysis, and transmission electron microscopy (TEM) were utilized to examine the distribution of the PB precipitate that was induced to form in roots.


2002 ◽  
Vol 716 ◽  
Author(s):  
Seok Woo Hong ◽  
Yong Sun Lee ◽  
Ki-Chul Park ◽  
Jong-Wan Park

AbstractThe effect of microstructure of dc magnetron sputtered TiN and TaN diffusion barriers on the palladium activation for autocatalytic electroless copper deposition has been investigated by using X-ray diffraction, sheet resistance measurement, field emission scanning electron microscopy (FE-SEM) and plan view transmission electron microscopy (TEM). The density of palladium nuclei on TaN diffusion barrier increases as the grain size of TaN films decreases, which was caused by increasing nitrogen content in TaN films. Plan view TEM results of TiN and TaN diffusiton barriers showed that palladium nuclei formed mainly on the grain boundaries of the diffusion barriers.


2012 ◽  
Vol 174-177 ◽  
pp. 508-511
Author(s):  
Lin Lin Yang ◽  
Yong Gang Wang ◽  
Yu Jiang Wang ◽  
Xiao Feng Wang

BiFeO3 polyhedrons had been successfully synthesized via a hydrothermal method. The as-prepared products were characterized by power X-ray diffraction (XRD) pattern, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The possible mechanisms for the formation of BiFeO3 polyhedrons were discussed. Though comparison experiments, it was found that the kind of precursor played a key role on the morphology control of BiFeO3 crystals.


2011 ◽  
Vol 236-238 ◽  
pp. 1712-1716 ◽  
Author(s):  
Hai Tao Liu ◽  
Jun Dai ◽  
Jia Jia Zhang ◽  
Wei Dong Xiang

Bismuth selenide (Bi2Se3) hexagonal nanosheet crystals with uniform size were successfully prepared via a solvothermal method at 160°C for 22 h using bismuth trichloride(BiCl3) and selenium powder(Se) as raw materials, sodium bisulfite(NaHSO3) as a reducing agent, diethylene glycol(DEG) as solvent, and ammonia as pH regulator. Various techniques such as X-ray diffraction (XRD), field-emission scanning electron microscope (FESEM), high-resolution transmission electron microscope (HRTEM), and selected area electron diffraction (SAED) were used to characterize the obtained products. Results show that the as-synthesized samples are pure Bi2Se3 hexagonal nanosheet crystals. A possible growth mechanism for Bi2Se3 hexagonal nanosheet crystals is also discussed based on the experiment.


2012 ◽  
Vol 186 ◽  
pp. 212-215
Author(s):  
Jacek Krawczyk ◽  
Włodzimierz Bogdanowicz ◽  
Grzegorz Dercz ◽  
Wojciech Gurdziel

Microstructure of terminal area of Al65Cu32.9Co2.1ingots (numbers indicate at.%), obtained via directional solidification was studied. Scanning Electron Microscopy, Transmission Electron Microscopy and X-ray powder diffraction were applied. Point microanalysis by Scanning Electron Microscope was used for examination of chemical compositions of alloy phases. It was found that tetragonal θ phase of Al2Cu stoichiometric formula was the dominate phase (matrix). Additionally the alloy contained orthogonal set of nanofibres of Al7Cu2Co T phase with the average diameter of 50-500 nm and oval areas of hexagonal Al3(Cu,Co)2H-phase, surrounded by monoclinic AlCu η1phase rim. Inside some areas of H-phase cores of decagonal quasicrystalline D phase were observed.


2021 ◽  
Vol 19 (11) ◽  
pp. 66-71
Author(s):  
Maithm A. Obaid ◽  
Suha A Fadaam ◽  
Osama S. Hashim

The aim of this study is to prepare gold nanoparticles by a simple chemical method at a temperature of 70°C. The solution was dried on glass basest by Casting method, the rate of five drops per sample At a temperature 100 C. Then the structural and optical properties have been confirmed by X-ray diffraction, scanning electron microscopy (SEM) and Transmission Electron microscope (TEM), Fourier Transform Infrared Spectroscopy (FTIR) and spectrum.


Sign in / Sign up

Export Citation Format

Share Document