Composition changes in a basalt melt contained in a wire loop of Pt80Rh20: effects of temperature, time, and oxygen fugacity

1979 ◽  
Vol 43 (325) ◽  
pp. 115-119 ◽  
Author(s):  
Colin H. Donaldson

SummaryLosses of FeO, Na2O, and K2O from an alkali olivine basalt melted above the liquidus temperature in Pt80Rh20 wire loops are reported as a function of temperature, time, and PO2. Increasing temperature and decreasing PO2 increase the losses. Compared to open capsules the wire-loop container reduces FeO loss to a minimum but may exacerbate Na2O loss. Nonetheless for most types of experiment involving melt these losses are acceptable.

1982 ◽  
Vol 46 (338) ◽  
pp. 31-42 ◽  
Author(s):  
G. M. Corrigan

AbstractEffects of supercooling have been studied in a range of basaltic melts by isothermal and constant cooling rate experiments at one-atmosphere, using the wire-loop container method. The nucleation of plagioclase in these melts is systematically controlled by supercooling (-ΔT), time below the liquidus temperature, and initial superheating (+ΔT). The temperature at which the melt is initially superheated prior to supercooling controls the temperature at which crystal nucleation first takes place in a supercooled melt undergoing cooling; the greater the + ΔT the larger the degree of supercooling required prior to nucleation of the liquidus phase during cooling. In all six compositions investigated there are at least two fields in time-temperature space, one in which the liquidus phase always fails to nucleate on supercooling (favoured by small -ΔT) and one (favoured by large -ΔT) in which it always nucleates. These two fields may be separated by another in which the liquidus phase may or may not crystallize. Supercooling phenomena are not restricted to the liquidus phase but can also occur when the melt becomes saturated with subsequent phases. It is shown that the composition of plagioclase varies systematically with -ΔT and it is demonstrated that isothermal supercooling ‘lines’ can be used with a relatively high degree of accuracy to predict when nucleation of the liquidus phase will take place during constant cooling rate experiments.


Author(s):  
Cassius Iyad Ochoa Chaar ◽  
Valentyna Kostiuk ◽  
Navid Gholitabar
Keyword(s):  

1989 ◽  
Vol 67 (3) ◽  
pp. 928-932 ◽  
Author(s):  
Kan-Fa Chang ◽  
P. V. Blenis

The effects of temperature and relative humidity (RH) on the survival of Endocronartium harknessii teliospores and the longevity of these spores out of doors during daylight hours were studied. In one experiment, fresh and liquid-nitrogen-stored spores of E. harknessii were impacted onto spider webs or plastic threads and incubated in darkness at temperatures of 6, 15, and 24 °C and RHs of 39 and 98%. Survival was measured after 1, 2, 4, 8, and 16 days. Spore longevity decreased with increasing temperature and was lower at 98 than at 39% RH. In a second experiment, spores were impacted onto spider webs and placed out of doors on clear days. Viability decreased linearly with time and averaged 33% after 12 h. The data suggest that E. harknessii has relatively good ability to survive in an airborne state and thus would have considerable potential for long distance spread.


1975 ◽  
Vol 40 (1) ◽  
pp. 129-132 ◽  
Author(s):  
C. E. LYON ◽  
B. G. LYON ◽  
A. A. KLOSE ◽  
J. P. HUDSPETH

1982 ◽  
Vol 9 (2) ◽  
pp. 209 ◽  
Author(s):  
HM Rawson ◽  
JH Hindmarsh

Five commercial cultivars of sunflower were grown in cabinets at three temperature regimes, 32/22, 27/17 and 22/12°C, and with 15-h and 11-h photoperiods, and expansion of leaves 5-15 was followed. Leaves appeared faster with increasing temperature (0.022 leaves day-1 °C-1) and with increasing daylength. Areas of individual leaves increased linearly up the plant profile and, although final area per leaf (Amax) decreased with increasing temperature, the relative change was similar for each leaf position. Cultivars maintained their ranking for Amax across temperatures, and these rankings agreed with those in previous field studies. Within each temperature regime, both the expansion rate of leaves and the duration of expansion increased with leaf position. As temperature increased, leaves grew for shorter periods with a change of 1.04 days °C-1, but under the photon flux density used (500 �mol m-2 s-1, or about 25% full sunlight) expansion rates were greatest at the lowest temperature. Expansion rates were only one-third of those in field studies at comparable temperatures, but durations were similar. Cultivars that achieved the largest Amax did so via faster rates of expansion and not via longer durations: only one cultivar differed from the mean (20 days) duration of leaf expansion. All cultivars reached floral initiation progressively earlier with extension of photoperiod from 10 to 15 h, with the change for the most sensitive cultivars being 8 days and for the least sensitive 5 days. Rates of leaf emergence were linked with this sensitivity.


1977 ◽  
Vol 41 (319) ◽  
pp. 389-390
Author(s):  
K. A. Rodgers ◽  
J. E. Chisholm ◽  
R. J. Davis ◽  
C. S. Nelson

Motukoreaite occurs as relatively abundant, white, clay-like cement in both beach-rock and basaltic volcanic tuffs on the flanks of a small, extinct, late Pleistocene, basaltic cone at Brown's Island (Motukorea), within Waitemata Harbour, Auckland, New Zealand (36° 50′ S., 174° 35′ E.). The occurrence was originally recorded by Bartrum (1941) as ‘beach limestone’ found at two places of the island's shore. The beach-rock consists of a grain-supported fabric of poorly sorted, well-rounded, alkali-olivine basalt pebbles and granules, subangular to sub-rounded fresh olivine sand and abraded sand- and gravel-sized bioclasts in a colourless to pale yellow-green aphanocrystalline matrix of motukoreaite. Additional detritals include quartz, feldspar, and sedimentary rock fragments. Stereoscan examination of the surface of pieces of the cement prised from the beach-rock showed a box-work of plate-like crystals with a hexagonal form in which individuals measured about 3×3×0·02 microns (fig. 1).Wet-chemical analysis of a separate of the cement containing some 5 % quartz and traces of calcite and goethite gives SiO2 5·55, Al2O3 17·87, Fe2O3 0·73, CaO 0·92, MgO 22·98, MnO 0·70, ZnO 0·56, Na2O 0·71, K2O 0·10, CO2 9·32, SO3 10·00, H2O+ 19·62, H2O- 10·35, sum 99·41 %. The unit-cell formula using obtained unit-cell constants and measured specific gravity 1·43) is (Na0·73K0·07)∑0·80(Mg18·13Mn0·32Zn0·21)∑18·66Al11·15(CO3)6·22(SO4)3·97 (OH)51·1927·20H2O. Of several idealized formulae that may be proposed NaMg19Al12(CO3)6.5 (SO4)4(OH)54·28H2O is preferred.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Jiupeng Zhang ◽  
Guoqiang Liu ◽  
Li Xu ◽  
Jianzhong Pei

Sasobit additives with different dosages were added into 70# and 90# virgin asphalt binders to prepare WMA binders. The rheological properties, includingG∗andδ, were measured by using DSR at the temperature ranging from 46°C to 70°C, and the effects of temperature, additive dosage and aging onG∗/sin⁡δ, critical temperature, and H-T PG were investigated. The results indicate that WMA additive improvesG∗but reducesδ, and the improvement on 70# virgin binder is more significant.G∗/sin⁡δexponentially decreases with the increasing temperature but linearly increases with the increasing additive dosage. Aging effect weakens the interaction between binder and additive but significantly increases the binder’s viscosity; that is whyG∗/sin⁡δis higher after short-term aging. In addition, the critical temperature increases with the increasing additive dosage, and the additive dosage should be more than 3% and 5% to improve H-T PG by one grade for 70# and 90# virgin binder, respectively.


2010 ◽  
Vol 2010 (1) ◽  
pp. 000474-000478 ◽  
Author(s):  
David J Rasmussen ◽  
Rodney Thompson

Whether the need is due to poorly bondable materials, non-flat bonding surfaces, odd packaging situations, or just the need for high reliability; the integrity of a wire bond interconnect can usually be greatly improved through the proper use of Auxiliary Wires. Auxiliary Wires are defined as Security Wires, Security Bumps, or Stand-Off Stitch (aka Stitch on Bump). The old stand-by Security Wire has been an asset for several decades, however, this is being replaced by Security Bumps which require a smaller second bond termination area. Further, Stand-Off Stitch (SOS) has many more applications and also has many side benefits that could be incorporated into a circuit design for better wire strength properties, fewer interconnects (die to die bonding), and lower loops. Stand-Off Stitch bonding involves the placement of a ball bump at one end of the wire interconnect, then placing a wire with another ball at the other end of the interconnect and stitching off the wire on the previous placed ball bump. This results in a near homogeneous stitch bond interconnect to the bump with an inherent improvement in stitch bond pull strength. Another use for SOS is Reverse Bonding (Stitch bond on bump on die bond pad) often resulting in a lower loop profile than standard forward wire loop and the loop is stronger because the wire hasn't been work annealed above the ball (in the Heat Affected Zone). A major impediment to the implementation of SOS is the retraining of visual inspectors and the approval of quality departments.


1974 ◽  
Vol 39 (306) ◽  
pp. 641-653 ◽  
Author(s):  
Fergus G. F. Gibb

SummaryThe liquidus temperature (1198 °C) and equilibrium phase relations of a sample of Columbia River basalt from the Picture Gorge section have been determined at I atmosphere by heating in a controlled atmosphere. When this basalt is cooled from above its liquidus temperature the liquidus phase (plagioclase) may fail to crystallize depending on the degree of undercooling and the duration of the experiment. A field in temperature-time space in which plagioclase fails to crystallize on cooling is separated from another in which plagioclase always crystallizes by a third in which the nucleation of plagioclase is unpredictable in terms of temperature and time. The extent to which this basaltic liquid can be supercooled without the crystallization of plagioclase is independent of the time it is held above the liquidus or the temperature in excess of the liquidus to which it is heated.The exceptionally long times required to ensure the nucleation of plagioclase at or near the liquidus temperature suggest that many so-called ‘equilibrium’ phase relations determined from experiments of a few hours' duration could be in serious error if the ‘equilibration’ involves a nucleation process.It is demonstrated that, over a range of cooling rates, the temperature at which plagioclase begins to crystallize on cooling varies markedly and the temperature and times required for both possible and certain nucleation of plagioclase are calculated for a range of constant cooling rates. The range of cooling rates over which the nucleation temperature of plagioclase varies is likely to occur in nature only in certain lava flows and small minor intrusions. In such cases this could lead to changes in the order in which the minerals appear on cooling and other petrologically significant effects.


Sign in / Sign up

Export Citation Format

Share Document