Jentschite (TIPbAs2SbS6) – a new sulphosalt mineral from Lengenbach, Binntal (Switzerland)

1997 ◽  
Vol 61 (404) ◽  
pp. 131-137 ◽  
Author(s):  
Stefan Graeser ◽  
Andreas Edenharter

AbstractJentschite, TlPbAs2SbS6, is a new sulphosalt mineral from the famous Lengenbach locality (Binntal, Switzerland). It was discovered in association with numerous other Tl-As-sulphosalts such as hutchinsonite, wallisite-hatchite, edenharterite, bernardite, abundant realgar and orpiment in small cavities in a dolomitic rock of Triassic age which forms part of the Penninic Monte-Leone-nappe. The first specimens consisted of extremely small polysynthetically twinned crystals; a later find yielded less complicated twinned crystals in sizes up to 2 mm length. Single crystal X-ray diffraction studies gave a monoclinic cell with a = 8.121(3), b = 23.969(9), c = 5.847(3) Å, β = 107.68(3)° V = 1084.3(5) Å3, Z = 4, space group P21/n. The strongest lines in the X-ray powder diagram are (dobs in Å, Iobs, hkl): 2.823 (100)(116), 3.587 (86)(221), 2.778 (84)(260), 3.998 (74)(060), 2.670 (58)(301), 3.816 (54)(210). Chemical composition (electron microprobe, mean of 15 analyses, wt.%) is: Tl 23.92, Pb 21.44, As 19.16, Sb 12.53, S 22.42, total 99.47 wt.% from which a simplified formula TlPbAs2Sb1S6 can be derived. This formula is very close to that of the (orthorhombic) mineral edenharterite TlPbAs3S6. From structural and chemical data it was interpreted as the ordered structure of an Sb-bearing relative of edenharterite, a postulation that meanwhile could be confirmed by the complete structure determinations of both, edenharterite and jentschite (Berlepsch, 1996). Jentschite occurs in prismatic crystals up to 2 mm length; it is opaque with a black metallic to submetallic luster, red translucent in thin fragments. Fracture is uneven to conchoidal, the mineral is extremely brittle, the cleavage along (01) is perfect; the streak is dark red (darker than that of edenharterite). Mohs hardness is 2–2½, according to a microhardness VHN (10 g load) of 38–51 kg/mm2. The calculated density yields Dcalc = 5.24 g/cm3.The name is for Franz Jentsch (1868–1908) from Binn, a local ‘Strahler’ and for several years head of an early Lengenbach syndicate that exploited the rare Lengenbach sulphosalt minerals at the beginning of this century.

2021 ◽  
pp. 1-8
Author(s):  
Jiří Sejkora ◽  
Pavel Škácha ◽  
Jakub Plášil ◽  
Zdeněk Dolníček ◽  
Jana Ulmanová

Abstract The new mineral hrabákite (IMA2020-034) was found in siderite–sphalerite gangue with minor dolomite–ankerite at the dump of shaft No. 9, one of the mines in the abandoned Příbram uranium and base-metal district, central Bohemia, Czech Republic. Hrabákite is associated with Pb-rich tučekite, Hg-rich silver, stephanite, nickeline, millerite, gersdorffite, sphalerite and galena. The new mineral occurs as rare prismatic crystals up to 120 μm in size and allotriomorphic grains. Hrabákite is grey with a brownish tint. Mohs hardness is ca. 5–6; the calculated density is 6.37 g.cm–3. In reflected light, hrabákite is grey with a brown hue. Bireflectance is weak and pleochroism was not observed. Anisotropy under crossed polars is very weak (brownish tints) to absent. Internal reflections were not observed. Reflectance values of hrabákite in air (Rmin–Rmax, %) are: 39.6–42.5 at 470 nm, 45.0–47.5 at 546 nm, 46.9–49.2 at 589 nm and 48.9–51.2 at 650 nm). The empirical formula for hrabákite, based on electron-microprobe analyses (n = 11), is (Ni8.91Co0.09Fe0.03)9.03(Pb0.94Hg0.04)0.98(Sb0.91As0.08)0.99S7.99. The ideal formula is Ni9PbSbS8, which requires Ni 47.44, Pb 18.60, Sb 10.93 and S 23.03, total of 100.00 wt.%. Hrabákite is tetragonal, P4/mmm, a = 7.3085(4), c = 5.3969(3) Å, with V = 288.27(3) Å3 and Z = 1. The strongest reflections of the calculated powder X-ray diffraction pattern [d, Å (I)(hkl)] are: 3.6543(57)(200); 3.2685(68)(210); 2.7957(100)(211); 2.3920(87)(112); 2.3112(78)(310); 1.8663(74)(222); and 1.8083(71)(302). According to the single-crystal X-ray diffraction data (Rint = 0.0218), the unit cell of hrabákite is undoubtedly similar to the cell reported for tučekite. The structure contains four metal cation sites, two Sb (Sb1 dominated by Pb2+) and two Ni (with minor Co2+ content) sites. The close similarity in metrics between hrabákite and tučekite is due to similar bond lengths of Pb–S and Sb–S pairs. Hrabákite is named after Josef Hrabák, the former professor of the Příbram Mining College.


2020 ◽  
Vol 58 (4) ◽  
pp. 421-436 ◽  
Author(s):  
Nikita V. Chukanov ◽  
Sergey M. Aksenov ◽  
Igor V. Pekov ◽  
Dmitriy I. Belakovskiy ◽  
Svetlana A. Vozchikova ◽  
...  

ABSTRACT The new eudialyte-group mineral sergevanite, ideally Na15(Ca3Mn3)(Na2Fe)Zr3Si26O72(OH)3·H2O, was discovered in highly agpaitic foyaite from the Karnasurt Mountain, Lovozero alkaline massif, Kola Peninsula, Russia. The associated minerals are microcline, albite, nepheline, arfvedsonite, aegirine, lamprophyllite, fluorapatite, steenstrupine-(Ce), ilmenite, and sphalerite. Sergevanite forms yellow to orange-yellow anhedral grains up to 1.5 mm across and the outer zones of some grains of associated eudialyte. Its luster is vitreous, and the streak is white. No cleavage is observed. The Mohs' hardness is 5. Density measured by equilibration in heavy liquids is 2.90(1) g/cm3. Calculated density is equal to 2.906 g/cm3. Sergevanite is nonpleochroic, optically uniaxial, positive, with ω = 1.604(2) and ε = 1.607(2) (λ = 589 nm). The infrared spectrum is given. The chemical composition of sergevanite is (wt.%; electron microprobe, H2O determined by HCN analysis): Na2O 13.69, K2O 1.40, CaO 7.66, La2O3 0.90, Ce2O3 1.41, Pr2O3 0.33, Nd2O3 0.64, Sm2O3 0.14, MnO 4.15, FeO 1.34, TiO2 1.19, ZrO2 10.67, HfO2 0.29, Nb2O5 1.63, SiO2 49.61, SO3 0.77, Cl 0.23, H2O 4.22, –O=Cl –0.05, total 100.22. The empirical formula (based on 25.5 Si atoms pfu, in accordance with structural data) is H14.46Na13.64K0.92Ca4.22Ce0.27La0.17Nd0.12Pr0.06Sm0.02Mn1.81Fe2+0.58Ti0.46Zr2.67Hf0.04Nb0.38Si25.5S0.30Cl0.20O81.35. The crystal structure was determined using single-crystal X-ray diffraction data. The new mineral is trigonal, space group R3, with a = 14.2179(1) Å, c = 30.3492(3) Å, V = 5313.11(7) Å3, and Z = 3. In the structure of sergevanite, Ca and Mn are ordered in the six-membered ring of octahedra (at the sites M11 and M12), and Na dominates over Fe2+ at the M2 site. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 7.12 (70) (110), 5.711 (43) (202), 4.321 (72) (205), 3.806 (39) (033), 3.551 (39) (220, 027), 3.398 (39) (313), 2.978 (95) (), 2.855 (100) (404). Sergevanite is named after the Sergevan' River, which is near the discovery locality.


2015 ◽  
Vol 79 (3) ◽  
pp. 583-596 ◽  
Author(s):  
E. V. Sokol ◽  
Y. V. Seryotkin ◽  
S. N. Kokh ◽  
Ye. Vapnik ◽  
E. N. Nigmatulina ◽  
...  

AbstractFlamite (Ca,Na,K)2(Si,P)O4 (P63; a = 43.3726(18), c = 6.8270(4) Å; V = 11122.2(9) Å3), a natural analogue of the P,Na,K-doped high-temperature α-Ca2SiO4 modification, is a new mineral from Ca- and Al-rich paralava, an ultrahigh-temperature combustion metamorphic melt rock. The type locality is situated in the southern Hatrurim Basin, the Negev Desert, Israel. Flamite occurs as regular lamellar intergrowths with partially hydrated larnite, together with rock-forming gehlenite, rankinite and Ti-rich andradite, minor ferrian perovskite, magnesioferrite, hematite, and retrograde ettringite and calcium silicate hydrates. The mineral is greyish to yellowish, transparent with a vitreous lustre, non-fluorescent under ultraviolet light and shows no parting or cleavage; Mohs hardness is 5–5½; calculated density is 3.264 g cm–3. The empirical formula of holotype flamite (mean of 21 analyses) is (Ca1.82Na0.09K0.06(Mg,Fe,Sr,Ba)0.02)Σ1.99(Si0.82P0.18)Σ1.00O4. The strongest lines in the powder X-ray diffraction pattern are [d, Å (Iobs)]: 2.713(100), 2.765(44), 2.759(42), 1.762(32), 2.518(29), 2.402(23), 2.897(19), 1.967(18), 2.220(15), 1.813(15). The strongest bands in the Raman spectrum are 170, 260, 520, 538, 850, 863, 885, 952 and 1003 cm–1.


2015 ◽  
Vol 79 (3) ◽  
pp. 661-669 ◽  
Author(s):  
A. R. Kampf ◽  
P. M. Adams ◽  
B. P. Nash ◽  
J. Marty

AbstractFerribushmakinite (IMA2014-055), Pb2Fe3+(PO4)(VO4)(OH), the Fe3+ analogue of bushmakinite, is a new mineral from the Silver Coin mine, Valmy, Iron Point district, Humboldt County, Nevada, USA, where it occurs as a low-temperature secondary mineral in association with plumbogummite, mottramite, Br-rich chlorargyrite and baryte on massive quartz. Ferribushmakinite forms yellow slightly flattened prisms up to 0.2 mm long growing in X and sixling twins. The streak is pale yellow. Crystals are translucent and have adamantine lustre. The Mohs hardness is ∼2, the tenacity is brittle, the fracture is irregular to splintery and crystals exhibit one or two fair cleavages in the [010] zone. The calculated density is 6.154 g/cm3. Electron microprobe analyses provided: PbO 63.69, CaO 0.07, CuO 1.11, Fe2O3 7.63, Al2O3 1.63, V2O5 12.65, As2O5 3.09, P2O58.63, H2O 1.50 (structure), total 100.00 wt.% (normalized). The empirical formula (based on nine O a.p.f.u.) is: (Pb1.99Ca0.01)Σ2.00(Fe0.66Al0.22Cu0.10)Σ0.98(V0.97P0.85As0.19)Σ2.01O7.84(OH)1.16. Ferribushmakinite is monoclinic, P21/m, a = 7.7719(10), b = 5.9060(7), c = 8.7929(12) Å, β = 111.604(8)°, V = 375.24(9) Å3 and Z = 2. The eight strongest lines in the powder X-ray diffraction pattern are [dobs in Å (I)(hkl)]: 4.794(46)(011); 3.245(84)(211); 2.947(100)(020,212,103); 2.743(49)(112); 2.288(30)(220); 1.8532(27)(314,403); 1.8084(27)(multiple); and 1.7204(28)(312,114,321). Ferribushmakinite is a member of the brackebuschite supergroup. Its structure (R1 = 3.83% for 577 Fo > 4σF) differs from that of bushmakinite only in the dominance of Fe3+ over Al in the octahedral site.


2017 ◽  
Vol 81 (1) ◽  
pp. 113-122 ◽  
Author(s):  
Atali A. Agakhanov ◽  
Leonid A. Pautov ◽  
Elena Sokolova ◽  
Frank C. Hawthorne ◽  
Vladimir Yu Karpenko ◽  
...  

AbstractOdigitriaite, a new Cs, Na, Ca borosilicate mineral, was discovered in moraine adjacent to the Darai-Pioz alkaline massif in the upper reaches of the Darai-Pioz river at the intersection of the Turkestansky, Zeravshansky and Alaisky mountain ridges, Tajikistan. It occurs as irregular thin flakes associated with quartz, pectolite, baratovite, fluorite, pekovite, polylithionite, aegirine, leucosphenite, pyrochlore, neptunite, reedmergnerite, mendeleevite-(Ce), zeravshanite and sokolovaite. It is colourless with a white streak, is translucent and has a vitreous lustre; it does not fluoresce under ultraviolet light. Odigitriaite is brittle with an uneven fracture and a Mohs hardness of 5. The calculated density is 2.80(2) g/cm3. The indices of refraction are α = 1.502, β = 1.564, γ = 1.576; 2Vobs = 46(2)°, dispersion is weak r > v, and there is no pleochroism. The chemical composition is as follows (electron microprobe, H2O calculated from structure): SiO2 55.30, Al2O3 0.09, Y2O3 0.44, MnO 0.94, FeO 0.10, PbO 0.21, K2O 0.01 Cs2O 8.36, B2O3 4.75, H2O 0.37, F 1.74, O = F2 –0.74, total 99.43 wt.%. The empirical formula of odigitriaite is Cs0.90Na5.12Ca4.68Mn0.20Y0.06Fe0.02Pb0.01[Si13.92Al0.03B2.06O38]F1.39(OH)0.62. The end-member formula is CsNa5Ca5[Si14B2O38]F2. The strong reflections in the powder X-ray diffraction pattern are: [(d, Å), (I, %), (hkl)]: 5.45 (25) (1 1 3), 4.66 (33) (3 1 1), 4.40 (26) (0 2 2), 4.10 (36) (3 1 3), 3.95 (25) (3̄ 1 3), 2.85 (31) (2 2 2), 2.68 (40) (0 0 6), 3.62 (45) (0 2 4), 3.35 (100) (2̄ 2 4), 3.31 (30) (3̄ 1 5), 3.25 (35) (4 0 4), 3.04 (60) (4̄ 2 2), 2.925 (22) (4̄ 2 3), 1.813 (23) (9 1 0). Odigitriaite is monoclinic, space group C2/c, a = 16.652(5), b = 9.598 (3), c = 22.120(7) Å, β= 92.875(14)°, V = 3530.9(1.9) Å3, Z = 4. The crystal structure of odigitriaite was solved by direct methods and refined to an R1 value of 2.75% based on single-crystal X-ray data. It is a double-layer sheet-borosilicate mineral; Cs and Na are intercalated within the double-layer sheet, and the double layers are linked by interstitial Ca and Na atoms.


2016 ◽  
Vol 80 (7) ◽  
pp. 1265-1272 ◽  
Author(s):  
Anthony R. Kampf ◽  
Barbara P. Nash ◽  
Maurizio Dini ◽  
Arturo Molina A. Donoso

AbstractThe new mineral gajardoite (IMA2015-040), KCa0.5As3+4O6Cl2·5H2O, was found at the Torrecillas mine, Iquique Province, Chile, where it occurs as a secondary alteration phase in association with native arsenic, arsenolite,chongite, talmessite and torrecillasite. Gajardoite occurs as hexagonal plates up to ∼100 μm in diameter and 5 μm thick, in rosette-like subparallel intergrowths. Crystals are transparent, with vitreous lustre and white streak. The Mohs hardness is ∼1½, tenacity is brittleand fracture is irregular. Cleavage is perfect on {001}. The measured density is 2.64 g/cm3 and the calculated density is 2.676 g/cm3. Optically, gajardoite is uniaxial (–) with ω = 1.780(3) and ε = 1.570(5) (measured in white light). The mineral is very slowly soluble in H2O and slowly soluble in dilute HCl at room temperature. The empirical formula, determined from electron-microprobe analyses, is (K0.77Ca0.71Na0.05Mg0.05)∑1.58As4O11Cl1.96H9.62.Gajardoite is hexagonal, P6/mmm, a = 5.2558(8), c = 15.9666(18) Å, V = 381.96(13) Å3 and Z = 1. The eight strongest powder X-ray diffraction lines are [dobs Å(I)(hkl)]: 16.00(100)(001), 5.31(48)(003),3.466 (31)(103), 3.013(44)(104), 2.624(51)(006,110,111), 2.353(36)(113), 1.8647(21)(116,205) and 1.4605(17) (119,303,216). The structure, refined to R1 = 3.49% for 169 Fo > 4σF reflections, contains two types of layers. One layer of formulaKAs3+4O6Cl2 consists of two neutral As2O3 sheets, between which are K+ cations and on the outside of which are Cl– anions. This layer is topologically identical to a slice of the lucabindiite structureand similar to a slice of the torrecillasite structure. The second layer consists of an edge-sharing sheet of Ca(H2O)6 trigonal pyramids with isolated H2O groups centred in the hexagonal cavities in the sheet.


2020 ◽  
Vol 32 (6) ◽  
pp. 637-644
Author(s):  
Stuart J. Mills ◽  
Uwe Kolitsch ◽  
Georges Favreau ◽  
William D. Birch ◽  
Valérie Galea-Clolus ◽  
...  

Abstract. The new mineral gobelinite, ideally CoCu4(SO4)2(OH)6⚫6H2O, is a new member of the ktenasite group and the Co analogue of ktenasite, ZnCu4(SO4)2(OH)6⚫6H2O. It occurs at Cap Garonne (CG), Var, France (type locality), and Eisenzecher Zug (EZ), Siegerland, North Rhine-Westphalia, Germany (cotype locality). The mineral forms pale green, bluish green or greyish green, blocky to thin, lath-like crystals. They are transparent and non-fluorescent, with a vitreous, sometimes also pearly, lustre and a white streak having a pale-green cast. Mohs hardness is about 2.5. The crystals are brittle with an irregular fracture; no cleavage was observed. D(meas.) is 2.95(2) and D(calc.) is 2.907 g cm−3 (for empirical formula, CG). Common associates are brochantite and various other hydrated metal sulfates. Electron-microprobe analyses of the CG material yielded (wt. %) CuO 42.45, CoO 6.58, NiO 3.37, ZnO 3.14, SO3 22.12, and H2O 22.62 (calculated on structural grounds), and total = 100.30 wt. %, giving the empirical formula (based on 20 O atoms) (Co0.63Ni0.32Zn0.28Cu3.83)Σ5.06S1.98O20H18.00. The simplified formula is (Co,Ni)(Cu,Zn)4(SO4)2(OH)6⚫6H2O, and the endmember formula is CoCu4(SO4)2(OH)6⚫6H2O. Scanning electron microscopy–energy dispersive X-ray spectroscopy (SEM–EDS) analyses of the (Zn-free) EZ material gave the simplified average formula (Co0.92Ni0.21Mg0.01Cu3.79)Σ4.93(SO4)2.08(OH)6⚫6H2O. Optically, gobelinite (CG) is biaxial negative, with α=1.576(2), β=1.617(2) and γ=1.630(2); 2Vmeas=58(4)∘ and 2Vcalc=57.5∘. Dispersion is weak, r>v; orientation is X=β, Y=γ and Z≈α, with strong pleochroism X equaling colourless, Y equaling green and Z equaling pale green. The mineral is monoclinic, space group P21∕c, with a=5.599(1), b=6.084(1), c=23.676(5) Å, β=95.22(3)∘ and V=803.2(3) Å3 (at 100 K; CG) and a=5.611(1), b=6.103(1), c=23.808(5) Å, β=95.18(3)∘ and V=811.9(3) Å3 (at 298 K; EZ), respectively (Z=2). The eight strongest measured powder X-ray diffraction lines (d in Å (I) hkl (CG material)) are 11.870 (100) 002, 5.924 (40) 004, 4.883 (10) 102, 4.825 (15) 013, 3.946 (15) 006, 2.956 (15) 008, 2.663 (20) 202 and 2.561 (15) 1‾23. Single-crystal structure determinations gave R1=0.0310 (CG) and 0.0280 (EZ). The atomic arrangement is based on brucite-like sheets formed from edge-sharing, Jahn–Teller-distorted (4+2 coordination) CuO6 octahedra. These sheets are decorated on both sides with SO4 tetrahedra and linked via hydrogen bonds to interstitial, fairly regular Co(H2O)6 octahedra. The name alludes to the Old French word gobelin, equivalent to the German word kobold, from which the designation of the element cobalt was derived.


1984 ◽  
Vol 48 (347) ◽  
pp. 271-275 ◽  
Author(s):  
Pete J. Dunn ◽  
Donald R. Peacor

AbstractNelenite, (Mn,Fe)16si12O30(OH)14[O6 (OH)3], is a polymorph of schallerite and a member of the friedelite group. X-ray diffraction patterns can be indexed on a supercell with a = 13.418(5) and c = 85.48(8)A, space group Rm, but by analogy with TEM results on mcGillite and friedelite, the structure is based on a one-layer monoclinic cell with a = 23.240, b = 13.418, c = 7.382 Å, β = 105.21°, and space group C2/m. Chemical analysis yields SiO2 31.12, FeO 17.12, MgO 0.12, ZnO 3.63, MnO 29.22, As2O3 12.46, H2O 6.42, sum = 100.09%. Analysis of a number of samples indicates that Fe substitutes for Mn up to 5.8 of the 16 octahedrally coordinated cations, but that the Si: As ratio is constant. The strongest lines in the X-ray powder diffraction pattern (d, I/Io) are: 2.552,100; 2.878,70; 1.677,60; 3.55,60; 1.723,50.Nelenite is brown in colour with a vitreous luster and perfect {0001} cleavage, which easily distinguishes it from schallerite. The Mohs' hardness is approximately 5. The density is 3.45 g/cm3 (calc.) and 3.46 g/cm3 (obs.). Nelenite is uniaxial negative with ɛ = 1.700 and ω = 1.718 (both ± 0.004). Nelenite was formerly known as ferroschallerite, which is a misnomer. It was found in the Franklin Mine, Franklin, Sussex County, New Jersey, in the 1920s. It occurs in several parageneses, associated with actinolite, tirodite, albite, garnet, feldspars, and several members of the stilpnomelane group in coarse-grained assemblages with pegmatitic texture and a breccia likely derived from this rock. Nelenite is named in honour of Joseph A. Nelen, chemist at the Smithsonian Institution.


2015 ◽  
Vol 79 (4) ◽  
pp. 949-963 ◽  
Author(s):  
Leonid A. Pautov ◽  
Atali A. Agakhanov ◽  
Elena Sokolova ◽  
Frank C. Hawthorne ◽  
Vladimir Y. Karpenko ◽  
...  

AbstractKhvorovite, ideally Pb42+Ca2[Si8B2(SiB)O28]F, is a new borosilicate mineral of the hyalotekite group from the Darai-Pioz alkaline massif in the upper reaches of the Darai-Pioz river, Tajikistan. Khvorovite was found in a pectolite aggregate in silexites (quartz-rich rocks). The pectolite aggregate consists mainly of pectolite, quartz and fluorite, with minor aegirine, polylithionite, turkestanite and baratovite; accessory minerals are calcite, pyrochlore-group minerals, reedmergnerite, stillwellite-(Ce), pekovite, zeravshanite, senkevichite, sokolovaite, mendeleevite-(Ce), alamosite, orlovite, leucosphenite and several unknown Cs-silicates. Khvorovite occurs as irregular grains, rarely with square or rectangular sections up to 150 μm, and grain aggregates up to 0.5 mm. Khvorovite is colourless, rarely white, transparent with a white streak, has a vitreous lustre and does not fluoresce under ultraviolet light. Cleavage and parting were not observed. Mohs hardness is 5–5.5, and khvorovite is brittle with an uneven fracture. The measured and calculated densities are 3.96(2) and 3.968 g/cm3, respectively. Khvorovite is biaxial (+) with refractive indices (λ = 589 nm) α = 1.659(3), βcalc. = 1.671(2), γ = 1.676(3); 2Vmeas. = 64(3)°, medium dispersion: r < v. Khvorovite is triclinic, space group I1¯, a = 11.354(2), b = 10.960(2), c = 10.271(2) Å, α = 90.32(3), β = 90.00(3), γ = 90.00(3)°, V = 1278(1) Å3, Z = 2. The six strongest lines in the powder X-ray diffraction pattern [d (Å), I, (hkl)] are: 7.86, 100, (110); 7.65, 90, (101); 7.55, 90, (011); 3.81, 90, (202); 3.55, 90, (301); 2.934, 90, (312, 312). Chemical analysis by electron microprobe gave SiO2 36.98, B2O3 6.01, Y2O3 0.26, PbO 40.08, BaO 6.18, SrO 0.43, CaO 6.77, K2O 1.72, Na2O 0.41, F 0.88, O=F –0.37, sum 99.35 wt.%. The empirical formula based on 29 (O+F) a.p.f.u. is (Pb2.762+Ba0.62K0.56Na0.16)Σ4.10(Ca1.86Sr0.06Y0.04Na0.04)Σ2[Si8B2(Si1.46B0.65)Σ2.11O28](F0.71O0.29), Z = 2 , and the simplified formula is (Pb2+, Ba, K)4Ca2[Si8B2(Si,B)2O28]F. The crystal structure of khvorovite was refined to R1 = 2.89% based on 3680 observed reflections collected on a four-circle diffractometer with MoKα radiation. In the crystal structure of khvorovite, there are four [4]-coordinated Si sites occupied solely by Si with <Si–O>= 1.617 Å. The [4]-coordinated B site is occupied solely by B, with <B–O> = 1.478 Å. The [4]-coordinated T site is occupied by Si and B (Si1.46B0.54), with <T–O> = 1.605 Å; it ideally gives (SiB) a.p.f.u. The Si, B and T tetrahedra form an interrupted framework of ideal composition [Si8B2(SiB)O28]11–. The interstitial cations are Pb2+, Ba and K (minor Na) [A(11–22) sites] and Ca [M site]. The two A sites are each split into two subsites ∼0.5 Å apart and occupied by Pb2+ and Ba + K. The [8]-coordinated M site is occupied mainly by Ca, with minor Sr, Y and Na. Khvorovite is a Pb2+ analogue of hyalotekite, (Ba,Pb2+,K)4(Ca,Y)2[Si8(B,Be)2(Si,B)2O28]F and a Pb2+-, Ca-analogue of kapitsaite-(Y), (Ba,K)4(Y,Ca)2[Si8B2(B,Si)2O28]F. It is named after Pavel V. Khvorov (b. 1965), a Russian mineralogist, to honour his contribution to the study of the mineralogy of the Darai-Pioz massif.


2019 ◽  
Vol 57 (4) ◽  
pp. 467-474
Author(s):  
Pietro Vignola ◽  
Nicola Rotiroti ◽  
G. Diego Gatta ◽  
Andrea Risplendente ◽  
Frédéric Hatert ◽  
...  

Abstract Huenite, Cu4Mo3O12(OH)2, is a new copper and molybdenum oxy-hydroxide mineral found in the San Samuel Mine, Carrera Pinto, Cachiyuyo de Llampos district, Copiapó Province, Atacama Region, Chile. This new species forms flattened orthorhombic prisms up to 60–70 μm in size, weakly elongated along [001]. Huenite crystals were found on fractured surfaces of a quartz breccia, forming aggregates 1 mm in diameter in close association with lindgrenite, gypsum, dark grayish-brown tourmaline, and an unknown pale purple phase. The color is very dark reddish-brown, with a strong vitreous to adamantine luster. Its streak is pale reddish-brown to pinkish. The mineral is brittle with an irregular fracture and a Mohs hardness of 3.5–4 with a good cleavage on {010}. Its calculated density is 5.1 g/cm3. The calculated refractive index is 2.18. Huenite is non-fluorescent under 254 nm (short wave) and 366 nm (long wave) ultraviolet light. The empirical formula, calculated on the basis of 3 (Mo+S+Si) atoms per formula unit, is (Cu3.519Fe2+0.403)Σ3.922(Mo2.907S0.090Si0.003)Σ3.000O12·(OH)2.229, with H2O content calculated for a total of 100 wt.%. Huenite is trigonal, with space group P31/c and unit-cell parameters a = 7.653(5) Å, c = 9.411(6) Å, and V = 477.4(5) Å3 for Z = 2. The eight strongest measured powder X-ray diffraction lines are: [d in Å, (I/I0), (hkl)]: 2.974 (100) (112), 1.712 (59.8) (132), 3.810 (50.6) (110), 2.702 (41.2) (022), 2.497 (38.1) (120), 1.450 (37.2) (134), 6.786 (24.9) (010), and 5.374 (24.5) (011). The mineral, which has been approved by the CNMNC under number IMA 2015-122, is named in honor of Edgar Huen.


Sign in / Sign up

Export Citation Format

Share Document