Odigitriaite, CsNa5Ca5[Si14B2O38]F2, a new caesium borosilicate mineral from the Darai-Pioz alkaline massif, Tajikistan: Description and crystal structure

2017 ◽  
Vol 81 (1) ◽  
pp. 113-122 ◽  
Author(s):  
Atali A. Agakhanov ◽  
Leonid A. Pautov ◽  
Elena Sokolova ◽  
Frank C. Hawthorne ◽  
Vladimir Yu Karpenko ◽  
...  

AbstractOdigitriaite, a new Cs, Na, Ca borosilicate mineral, was discovered in moraine adjacent to the Darai-Pioz alkaline massif in the upper reaches of the Darai-Pioz river at the intersection of the Turkestansky, Zeravshansky and Alaisky mountain ridges, Tajikistan. It occurs as irregular thin flakes associated with quartz, pectolite, baratovite, fluorite, pekovite, polylithionite, aegirine, leucosphenite, pyrochlore, neptunite, reedmergnerite, mendeleevite-(Ce), zeravshanite and sokolovaite. It is colourless with a white streak, is translucent and has a vitreous lustre; it does not fluoresce under ultraviolet light. Odigitriaite is brittle with an uneven fracture and a Mohs hardness of 5. The calculated density is 2.80(2) g/cm3. The indices of refraction are α = 1.502, β = 1.564, γ = 1.576; 2Vobs = 46(2)°, dispersion is weak r > v, and there is no pleochroism. The chemical composition is as follows (electron microprobe, H2O calculated from structure): SiO2 55.30, Al2O3 0.09, Y2O3 0.44, MnO 0.94, FeO 0.10, PbO 0.21, K2O 0.01 Cs2O 8.36, B2O3 4.75, H2O 0.37, F 1.74, O = F2 –0.74, total 99.43 wt.%. The empirical formula of odigitriaite is Cs0.90Na5.12Ca4.68Mn0.20Y0.06Fe0.02Pb0.01[Si13.92Al0.03B2.06O38]F1.39(OH)0.62. The end-member formula is CsNa5Ca5[Si14B2O38]F2. The strong reflections in the powder X-ray diffraction pattern are: [(d, Å), (I, %), (hkl)]: 5.45 (25) (1 1 3), 4.66 (33) (3 1 1), 4.40 (26) (0 2 2), 4.10 (36) (3 1 3), 3.95 (25) (3̄ 1 3), 2.85 (31) (2 2 2), 2.68 (40) (0 0 6), 3.62 (45) (0 2 4), 3.35 (100) (2̄ 2 4), 3.31 (30) (3̄ 1 5), 3.25 (35) (4 0 4), 3.04 (60) (4̄ 2 2), 2.925 (22) (4̄ 2 3), 1.813 (23) (9 1 0). Odigitriaite is monoclinic, space group C2/c, a = 16.652(5), b = 9.598 (3), c = 22.120(7) Å, β= 92.875(14)°, V = 3530.9(1.9) Å3, Z = 4. The crystal structure of odigitriaite was solved by direct methods and refined to an R1 value of 2.75% based on single-crystal X-ray data. It is a double-layer sheet-borosilicate mineral; Cs and Na are intercalated within the double-layer sheet, and the double layers are linked by interstitial Ca and Na atoms.

2018 ◽  
Vol 83 (03) ◽  
pp. 427-433 ◽  
Author(s):  
Peter Elliott

AbstractMiddlebackite is a new supergene mineral formed in the upper levels of the Iron Monarch quarry, South Australia. It occurs as aggregates of blue, prismatic crystals up to 0.3 mm across comprising individual crystals up to 0.05 mm in length associated with atacamite and mottramite. Crystals are translucent with a vitreous lustre and have a pale blue streak. Middlebackite is brittle with one perfect cleavage and uneven fracture. Mohs hardness is ~2. The calculated density is 3.64 g cm–3. Crystals are biaxial (+) with α = 1.663(4), β = 1.748(4) and γ = 1.861(4) (measured in white light). The calculated 2V is 86.7°. Pleochroism isX= colourless,Y= very pale blue andZ= dark sky blue;Z>Y>X. The empirical formula unit, based on six oxygen atoms per formula unit is Cu2.00(C2O4)Cl0.02(OH)1.98. Middlebackite is monoclinic, space groupP21/c witha= 7.2597(15),b= 5.7145(11),c= 5.6624(11) Å, β = 104.20(3)°,V= 227.73(8) Å3andZ= 2. The five strongest lines in the powder X-ray diffraction pattern are [d(Å), (I), (hkl)]: 7.070 (16) (100), 3.739 (100) (11$\bar{1}$), 2.860 (18) (020), 2.481 (12) (12$\bar{1}$) and 2.350 (9) (300). The crystal structure was refined from synchrotron single-crystal X-ray diffraction data toR1= 0.0341 for 596 observed reflections withF0> 4σ(F0). The structure is based on sheets of edge- and corner-sharing octahedra parallel to thebcplane. Sheets link in theadirection via oxalate anions.


2020 ◽  
Vol 58 (4) ◽  
pp. 421-436 ◽  
Author(s):  
Nikita V. Chukanov ◽  
Sergey M. Aksenov ◽  
Igor V. Pekov ◽  
Dmitriy I. Belakovskiy ◽  
Svetlana A. Vozchikova ◽  
...  

ABSTRACT The new eudialyte-group mineral sergevanite, ideally Na15(Ca3Mn3)(Na2Fe)Zr3Si26O72(OH)3·H2O, was discovered in highly agpaitic foyaite from the Karnasurt Mountain, Lovozero alkaline massif, Kola Peninsula, Russia. The associated minerals are microcline, albite, nepheline, arfvedsonite, aegirine, lamprophyllite, fluorapatite, steenstrupine-(Ce), ilmenite, and sphalerite. Sergevanite forms yellow to orange-yellow anhedral grains up to 1.5 mm across and the outer zones of some grains of associated eudialyte. Its luster is vitreous, and the streak is white. No cleavage is observed. The Mohs' hardness is 5. Density measured by equilibration in heavy liquids is 2.90(1) g/cm3. Calculated density is equal to 2.906 g/cm3. Sergevanite is nonpleochroic, optically uniaxial, positive, with ω = 1.604(2) and ε = 1.607(2) (λ = 589 nm). The infrared spectrum is given. The chemical composition of sergevanite is (wt.%; electron microprobe, H2O determined by HCN analysis): Na2O 13.69, K2O 1.40, CaO 7.66, La2O3 0.90, Ce2O3 1.41, Pr2O3 0.33, Nd2O3 0.64, Sm2O3 0.14, MnO 4.15, FeO 1.34, TiO2 1.19, ZrO2 10.67, HfO2 0.29, Nb2O5 1.63, SiO2 49.61, SO3 0.77, Cl 0.23, H2O 4.22, –O=Cl –0.05, total 100.22. The empirical formula (based on 25.5 Si atoms pfu, in accordance with structural data) is H14.46Na13.64K0.92Ca4.22Ce0.27La0.17Nd0.12Pr0.06Sm0.02Mn1.81Fe2+0.58Ti0.46Zr2.67Hf0.04Nb0.38Si25.5S0.30Cl0.20O81.35. The crystal structure was determined using single-crystal X-ray diffraction data. The new mineral is trigonal, space group R3, with a = 14.2179(1) Å, c = 30.3492(3) Å, V = 5313.11(7) Å3, and Z = 3. In the structure of sergevanite, Ca and Mn are ordered in the six-membered ring of octahedra (at the sites M11 and M12), and Na dominates over Fe2+ at the M2 site. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 7.12 (70) (110), 5.711 (43) (202), 4.321 (72) (205), 3.806 (39) (033), 3.551 (39) (220, 027), 3.398 (39) (313), 2.978 (95) (), 2.855 (100) (404). Sergevanite is named after the Sergevan' River, which is near the discovery locality.


1987 ◽  
Vol 65 (12) ◽  
pp. 2830-2833 ◽  
Author(s):  
David M. McKinnon ◽  
Peter D. Clark ◽  
Robert O. Martin ◽  
Louis T. J. Delbaere ◽  
J. Wilson Quail

3,5-Diphenyl-1,2-dithiolium-4-olate (1) reacts with aniline to form 1-phenylimino-2-phenylamino-3-phenylindene (3a). Under suitable conditions, 6-phenylbenzo[b]indeno[1,2-e]-1,2-thiazine is also formed. These structures are confirmed by alternative syntheses. The molecular structure of 3a has been determined by single crystal X-ray diffraction. Compound 3a crystallizes in the monoclinic space group C2/c with unit cell dimensions a = 20.777(3) Å, b = 6.130(3) Å, c = 31.327(3) Å, 3 = 99.59(1)°, and Z = 8. The structure was solved by direct methods and refined by least squares to a final R = 0.055. The molecular structure of 3a shows the three phenyl containing substituents to have the planes of their ring systems tilted between 40° and 60° from the plane of the indene system due to steric repulsions.


2013 ◽  
Vol 77 (3) ◽  
pp. 385-398 ◽  
Author(s):  
P. Elliott ◽  
J. Brugger ◽  
T. Caradoc-Davies ◽  
A. Pring

AbstractHylbrownite, ideally Na3MgP3O10·12H2O, the second known triphosphate mineral, is a new mineral species from the Dome Rock mine, Boolcoomatta Reserve, Olary Province, South Australia, Australia. The mineral forms aggregates and sprays of crystals up to 0.5 mm across with individual crystals up to 0.12 mm in length and 0.02 mm in width. Crystals are thin prismatic to acicular in habit and are elongate along [001]. Forms observed are {010}, {100}, {001}, {210} and {201}. Crystals are colourless to white, possess a white streak, are transparent, brittle, have a vitreous lustre and are nonfluorescent. The measured density is 1.81(4) g cm−3; Mohs' hardness was not determined. Cleavage is good parallel to {001} and to {100} and the fracture is uneven. Hylbrownite crystals are nonpleochroic, biaxial (−), with α = 1.390(4), β = 1.421(4), γ = 1.446(4) and 2Vcalc. = 82.2°. Hylbrownite is monoclinic, space group P21/n, with a = 14.722(3), b = 9.240(2), c = 15.052(3) Å, β = 90.01(3)°, V = 2047.5(7) Å3, (single-crystal data) and Z = 4. The strongest lines in the powder X-ray diffraction pattern are [d (Å)(I)(hkl)]: 10.530(60)(10,101), 7.357(80)(200), 6.951(100)(11, 111), 4.754(35)(10, 103), 3.934(40)(022), 3.510(45)(30, 303), 3.336(35)(41, 411). Chemical analysis by electron microprobe gave Na2O 16.08, MgO 7.08, CaO 0.43, P2O5 37.60, H2Ocalc 38.45, total 99.64 wt.%. The empirical formula, calculated on the basis of 22 oxygen atoms is Na2.93Mg0.99Ca0.04P2.99O9.97·12.03H2O. The crystal structure was solved from single-crystal X-ray diffraction data using synchrotron radiation (T = 123 K) and refined to R1 = 4.50% on the basis of 2417 observed reflections with F0 > 4 σ(F0). [Mg(H2O)3P3O10] clusters link in the b direction to Naφ6 octahedra, by face and corner sharing. Edge sharing Naφ6 Octahedra and Naφ7 polyhedra form Na2O9 groups which link via corners to form chains along the b direction. Chains link to [Mg(H2O)3P3O10] clusters via corner-sharing in the c direction and form a thick sheet parallel to (100). Sheets are linked in the a direction via hydrogen bonds.


2010 ◽  
Vol 74 (5) ◽  
pp. 863-869 ◽  
Author(s):  
S. J. Mills ◽  
A. R. Kampf ◽  
P. A. Williams ◽  
P. Leverett ◽  
G. Poirier ◽  
...  

AbstractHydroniumpharmacosiderite, ideally (H3O)Fe4(AsO4)3(OH)4·4H2O, is a new mineral from Cornwall, UK, probably from the St. Day group of mines. It occurs as a single yellowish green, slightly elongated cube, measuring 0.17 mm ×0.14 mm ×0.14 mm. The mineral is transparent with a vitreous lustre. It is brittle with a cleavage on {001}, has an irregular fracture, a white streak and a Mohs hardness of 2–3 (determined on H3O-exchanged pharmacosiderite). Hydroniumpharmacosiderite has a calculated density of 2.559 g cm–3 for the empirical formula. The empirical formula, based upon 20.5 oxygen atoms, is: [(H3O)0.50K0.48Na0.06]1.04(Fe3.79Al0.22)4.01[(As2.73P0.15)2.88O12](OH)4·4H2.14O. The five strongest lines in the X-ray powder diffraction pattern are [dobs(Å),Iobs,(hkl)]: 8.050,100,(001); 3.265,35,(112); 2.412,30,(113); 2.830,23,(202); 4.628,22,(111). Hydroniumpharmacosiderite is cubic, space group with a = 7.9587(2) Å, V = 504.11(2) Å3 and Z = 1. The crystal structure was solved by direct methods and refined to R1 = 0.0481 for 520 reflections with I > 2σ(I). The structure is consistent with determinations for H3O-exhchanged pharmacosiderite and the general pharmacosiderite structure type.


2018 ◽  
Vol 82 (4) ◽  
pp. 821-836
Author(s):  
Mark A. Cooper ◽  
Gunnar Raade ◽  
Neil A. Ball ◽  
Yassir A. Abdu ◽  
Frank C. Hawthorne ◽  
...  

ABSTRACTFolvikite, Sb5+Mn3+(Mg,Mn2+)10O8(BO3)4, is a new oxyborate mineral from the Kitteln mine, Värmland, Sweden, where it occurs as a primary skarn mineral embedded in calcite. It forms striated prismatic crystals up to 0.3 mm, and is black to dark reddish-brown with submetallic lustre and a reddish-brown streak. It is brittle, has a Mohs hardness of 6, and the calculated density is 4.14 g/cm3. Folvikite is biaxial with indeterminate optic sign due to pervasive twinning. The optic axial angle is 68.9(4)°. Refractive indices were not measured; the calculated mean refractive index is 1.85. Strong pleochroism was observed in plane-polarized light: AB = brown (intermediate), OB = dark brown (maximum) and ON = honey brown (minimum). Folvikite is monoclinic, space group P2, a = 5.3767(10), b = 6.2108(10), c = 10.9389(18) Å, β = 94.399(9)°, V = 364.22(16) Å3 and Z = 1. Chemical analysis by electron microprobe gave Sb2O5 18.15, MgO 24.11, MnO 29.73, Mn2O3 11.62, Al2O3 0.27, Fe2O3 0.45, B2O3 15.27, sum 99.60 wt.%. The B2O3 content was assigned as B = 4 apfu and the Mn2O3 / (MnO + Mn2O3) ratio was determined from the crystal structure. The empirical formula was normalized on the basis of 20 anions pfu: (Sb5+1.02Mn3+1.34Al0.05Fe3+0.05Mg5.46Mn2+3.82□0.26)Σ12O8(BO3)4. A simplified formula may be written as Sb5+Mn3+(Mg,Mn2+)10O8(BO3)4 with Z = 1. The crystal structure was solved by direct methods and refined to an R1 index of 4.1%. Folvikite is a member of the (3 Å) zigzag wallpaper-borate structures in which chains of edge-sharing octahedra extend along the c axis and are cross-linked by BO3 groups. There are five X sites partly occupied by Mn2+ > Mg, one octahedrally coordinated M-site occupied by Sb5+ > Mg, two M sites occupied by Mg ≥ Mn > Sb5+, two M sites occupied by Mn3+ > Mn2+, two M sites occupied by Mg > Mn2+, and one M-site occupied by Mg > □; plus two [3]-coordinated B sites occupied by B. As with the other zigzag borates, the polyhedra are arranged in F-walls, C-walls and S-columns.


2015 ◽  
Vol 79 (4) ◽  
pp. 949-963 ◽  
Author(s):  
Leonid A. Pautov ◽  
Atali A. Agakhanov ◽  
Elena Sokolova ◽  
Frank C. Hawthorne ◽  
Vladimir Y. Karpenko ◽  
...  

AbstractKhvorovite, ideally Pb42+Ca2[Si8B2(SiB)O28]F, is a new borosilicate mineral of the hyalotekite group from the Darai-Pioz alkaline massif in the upper reaches of the Darai-Pioz river, Tajikistan. Khvorovite was found in a pectolite aggregate in silexites (quartz-rich rocks). The pectolite aggregate consists mainly of pectolite, quartz and fluorite, with minor aegirine, polylithionite, turkestanite and baratovite; accessory minerals are calcite, pyrochlore-group minerals, reedmergnerite, stillwellite-(Ce), pekovite, zeravshanite, senkevichite, sokolovaite, mendeleevite-(Ce), alamosite, orlovite, leucosphenite and several unknown Cs-silicates. Khvorovite occurs as irregular grains, rarely with square or rectangular sections up to 150 μm, and grain aggregates up to 0.5 mm. Khvorovite is colourless, rarely white, transparent with a white streak, has a vitreous lustre and does not fluoresce under ultraviolet light. Cleavage and parting were not observed. Mohs hardness is 5–5.5, and khvorovite is brittle with an uneven fracture. The measured and calculated densities are 3.96(2) and 3.968 g/cm3, respectively. Khvorovite is biaxial (+) with refractive indices (λ = 589 nm) α = 1.659(3), βcalc. = 1.671(2), γ = 1.676(3); 2Vmeas. = 64(3)°, medium dispersion: r < v. Khvorovite is triclinic, space group I1¯, a = 11.354(2), b = 10.960(2), c = 10.271(2) Å, α = 90.32(3), β = 90.00(3), γ = 90.00(3)°, V = 1278(1) Å3, Z = 2. The six strongest lines in the powder X-ray diffraction pattern [d (Å), I, (hkl)] are: 7.86, 100, (110); 7.65, 90, (101); 7.55, 90, (011); 3.81, 90, (202); 3.55, 90, (301); 2.934, 90, (312, 312). Chemical analysis by electron microprobe gave SiO2 36.98, B2O3 6.01, Y2O3 0.26, PbO 40.08, BaO 6.18, SrO 0.43, CaO 6.77, K2O 1.72, Na2O 0.41, F 0.88, O=F –0.37, sum 99.35 wt.%. The empirical formula based on 29 (O+F) a.p.f.u. is (Pb2.762+Ba0.62K0.56Na0.16)Σ4.10(Ca1.86Sr0.06Y0.04Na0.04)Σ2[Si8B2(Si1.46B0.65)Σ2.11O28](F0.71O0.29), Z = 2 , and the simplified formula is (Pb2+, Ba, K)4Ca2[Si8B2(Si,B)2O28]F. The crystal structure of khvorovite was refined to R1 = 2.89% based on 3680 observed reflections collected on a four-circle diffractometer with MoKα radiation. In the crystal structure of khvorovite, there are four [4]-coordinated Si sites occupied solely by Si with <Si–O>= 1.617 Å. The [4]-coordinated B site is occupied solely by B, with <B–O> = 1.478 Å. The [4]-coordinated T site is occupied by Si and B (Si1.46B0.54), with <T–O> = 1.605 Å; it ideally gives (SiB) a.p.f.u. The Si, B and T tetrahedra form an interrupted framework of ideal composition [Si8B2(SiB)O28]11–. The interstitial cations are Pb2+, Ba and K (minor Na) [A(11–22) sites] and Ca [M site]. The two A sites are each split into two subsites ∼0.5 Å apart and occupied by Pb2+ and Ba + K. The [8]-coordinated M site is occupied mainly by Ca, with minor Sr, Y and Na. Khvorovite is a Pb2+ analogue of hyalotekite, (Ba,Pb2+,K)4(Ca,Y)2[Si8(B,Be)2(Si,B)2O28]F and a Pb2+-, Ca-analogue of kapitsaite-(Y), (Ba,K)4(Y,Ca)2[Si8B2(B,Si)2O28]F. It is named after Pavel V. Khvorov (b. 1965), a Russian mineralogist, to honour his contribution to the study of the mineralogy of the Darai-Pioz massif.


2012 ◽  
Vol 76 (5) ◽  
pp. 1119-1131 ◽  
Author(s):  
M. A. Cooper ◽  
Y. A. Abdu ◽  
N. A. Ball ◽  
F. C. Hawthorne ◽  
M. E. Back ◽  
...  

AbstractIanbruceite, ideally [Zn2(OH)(H2O)(AsO4)](H2O)2, is a new supergene mineral from the Tsumeb mine, Otjikoto (Oshikoto) region, Namibia. It occurs as thin platy crystals up to 80 μm long and a few μm thick, which form flattened aggregates up to 0.10 mm across, and ellipsoidal aggregates up to 0.5 mm across. It is associated with coarse white leiteite, dark blue köttigite, minor legrandite and adamite. Ianbruceite is sky blue to very pale blue with a white streak and a vitreous lustre; it does not fluoresce under ultraviolet light. It has perfect cleavage parallel to (100), is flexible, and deforms plastically. The Mohs hardness is 1 and the calculated density is 3.197 g cm-3. The refractive indices are α = 1.601, β = 1.660, γ = 1.662, all ±0.002; 2Vobs = 18(2)°, 2Vcalc = 20°, and the dispersion is r < v, weak. Ianbruceite is monoclinic, space group P21/c, a = 11.793(2), b = 9.1138(14), c = 6.8265(10) Å, β = 103.859(9)°, V = 712.3(3) Å3, Z = 4, a:b:c = 1.2940:1:0.7490. The seven strongest lines in the X-ray powder diffraction pattern [d(Å), I, (hkl)] are as follows: 11.29, 100, (100); 2.922, 17, (130); 3.143, 15, (202); 3.744, 11, (300); 2.655, 9, (230); 1.598, 8, (152); 2.252, 7, (222). Chemical analysis by electron microprobe gave As2O5 36.27, As2O3 1.26, Al2O3 0.37, ZnO 49.72, MnO 0.32, FeO 0.71, K2O 0.25, H2Ocalc 19.89, sum 108.79 wt.%; the very high oxide sum is due to the fact that the calculated H2O content is determined from crystal-structure analysis, but H2O is lost under vacuum in the electron microprobe.The crystal structure of ianbruceite was solved by direct methods and refined to an R1 index of 8.6%. The As is tetrahedrally coordinated by four O anions with a mean As O distance of 1.687 Å. Zigzag [[5]Zn[6]Znϕ7] chains extend in the c direction and are linked in the b direction by sharing corners with (AsO4) tetrahedra to form slabs with a composition [Zn2(OH)(H2O)(AsO4)]. The space between these slabs is filled with disordered (H2O) groups and minor lone-pair stereoactive As3+. The ideal formula derived from chemical analysis and crystal-structure solution and refinement is [Zn2(OH)(H2O)(AsO4)](H2O)2.


2020 ◽  
Vol 58 (5) ◽  
pp. 587-596
Author(s):  
Anatoly V. Kasatkin ◽  
Emil Makovicky ◽  
Jakub Plášil ◽  
Radek Škoda ◽  
Atali A. Agakhanov ◽  
...  

ABSTRACT The new sulfosalt chukotkaite, ideally AgPb7Sb5S15, was discovered in the valley of the Levyi Vulvyveem river, Amguema river basin, Iultin District, Eastern Chukotka, Chukotka Autonomous Okrug, North-Eastern region, Russia. The new mineral forms anhedral grains up to 0.4 × 0.5 mm intergrown with pyrrhotite, sphalerite, galena, stannite, quartz, and Mn-Fe-bearing clinochlore. Other associated minerals include arsenopyrite, benavidesite, diaphorite, jamesonite, owyheeite, uchucchacuaite, cassiterite, and fluorapatite. Chukotkaite is lead-grey and has metallic luster and a grey streak. It is brittle and has an uneven fracture. Neither cleavage nor parting were observed. Mohs hardness is 2–2½. Dcalc. = 6.255 g/cm3. In reflected light, chukotkaite is white, moderately anisotropic with rotation tints varying from bluish-grey to brownish-grey. No pleochroism or internal reflections are observed. The chemical composition of chukotkaite is (wt.%; electron microprobe) Ag 3.83, Pb 53.67, Sb 24.30, S 18.46, total 100.26. The empirical formula based on the sum of all atoms = 28 pfu is Ag0.93Pb6.78Sb5.22S15.07. Chukotkaite is monoclinic, space group P21/c, a = 4.0575(3), b = 35.9502(11), c = 19.2215(19) Å, β = 90.525(8)°, V = 2803.7(4) Å3, and Z = 4. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 3.52 (100) (045), 3.38 (50) (055), 3.13 (50) (065), , 2.82 (25) (066), 1.91 (50) (0 1 10). The crystal structure of chukotkaite was refined from single-crystal X-ray diffraction data to R = 0.0712 for 3307 observed reflections with Iobs &gt; 3σ(I). Chukotkaite belongs to the group of rod-based sulfosalts. The new mineral is named after the region of its type locality: Chukotka Autonomous Okrug, North-Eastern Region, Russia.


2010 ◽  
Vol 25 (1) ◽  
pp. 9-14 ◽  
Author(s):  
Y. Q. Chen ◽  
J. K. Liang ◽  
Y. X. Gu ◽  
J. Luo ◽  
J. B. Li ◽  
...  

A novel hexaborate, Na2ZnB6O11, has been successfully synthesized by solid-state reaction and ab initio crystal-structure analysis has been completed using powder X-ray diffraction data. The compound crystallizes in the monoclinic space group Cc with lattice parameters a=10.7329(2) Å b=7.4080(3) Å, c=11.4822(2) Å, and β=112.16(2)°. The number of chemical formula per unit cell is Z=4 and the calculated density is 2.768(3) g/cm3. It represents a new structure type in which double-bridge-ring [B6O11]4− groups were found as fundamental building units. The infrared spectrum confirms the presence of both [BO3]3− groups and [BO4]5− groups.


Sign in / Sign up

Export Citation Format

Share Document