The crystal structures, solid solutions and infrared spectra of copiapite-group minerals

2007 ◽  
Vol 71 (5) ◽  
pp. 553-569 ◽  
Author(s):  
J. Majzlan ◽  
R. Michallik

AbstractCopiapite is a mineral of iron- and sulphate-rich acidic environments and has a general formula AFe3+4 (SO4)6(OH)2(H2O)20, where A = Fe2+, 2/3Fe3+, 2/3Al3+, Mg, Zn. The structure is built by infinite tetrahedral-octahedral chains and isolated octahedrally coordinated A sites. Our synthetic and natural copiapite samples can be divided into two large groups based on the orientation of the structural fragments. One group comprises copiapite phases where A = Al3+, Fe2+ or Fe3+ and we designate it as the structural type AL. The other group consists of copiapite with A = Mg2+, Zn2+ or Ni2+ and this is the structural type MG. The solid-solution series between Fe3+ and Al3+ copiapite is continuous. The series between Mg2+-Al3+, Mg2+-Fe3+ and Mg2+-Al3+-Fe3+ copiapite are not continuous; the samples with intermediate compositions contain two copiapite phases, one of the type AL and one of the type MG. The series between Mg2+ and Zn2+ copiapite is continuous only at 25°C. At 75°C, the Zn-rich portion of this systemcrystallizes a copiapite-like phase whose structure may be a superstructure of copiapite. The series between Al-Fe2+ and Mg-Fe2+ copiapite are not continuous and show complex behaviour of the intermediate compositions.

1992 ◽  
Vol 7 (8) ◽  
pp. 2219-2224 ◽  
Author(s):  
N.E. Pingitore ◽  
B.F. Ponce ◽  
M.P. Eastman ◽  
F. Moreno ◽  
C. Podpora

Optical, electron microprobe, and x-ray diffraction analysis of 88 samples of various compositions between Ag2S and Ag2Se synthesized at high temperature in sealed quartz tubing indicates the presence of two solid-solution series in this system at ambient (room) conditions. One series extends from Ag2S to approximately Ag2S0.4Se0.7 and has the Ag2S-III-type structure (monoclinic). The second series ranges from Ag2S0.3Se0.7 to Ag2Se and is characterized by the Ag2Se-II-type structure (orthorhombic). Members of both series, in appropriate proportions, characterize the apparent compositional gap between the two solid solutions. Gradual shifts in the locations of the x-ray diffraction peaks along the compositional gradient of each solid solution revealed an expansion of the d-spacing as the larger Se ion was substituted for S in the Ag2S-III-type structure and a contraction as S was substituted for Se in the Ag2Se-II-type structure. The reported discrete phase, Ag4SSe (aguilarite, orthorhombic), appears to be simply a member of the monoclinic Ag2S-III-type solid solution.


1990 ◽  
Vol 54 (377) ◽  
pp. 603-608 ◽  
Author(s):  
H. de Bruiyn ◽  
W. A. Van Der Westhuizen ◽  
G. J. Beukes ◽  
T. Q. Meyer

AbstractCorkite associated with plumbojarosite and goethite occurs in gossan and iron-formation at Black Mountain and Broken Hill, Aggeneys. Electron microprobe analyses indicate that there are two groups of corkite present in the area; one with high Cu and low (PO4)3− and the other with low Cu and high (PO and the other with low Cu and high (PO4)3− contents. This can be explained in terms of the general formula contents. This can be explained in terms of the general formula AB2(XO4)2(OH)6, where the incorporation of divalent ions in the B site is accompanied by the exchange of trivalent anions by divalent ones to retain charge balance. Complete solid-solution is inferred between (SO4)2−and (PO4)3− end members, indicating that the jarosite and beudantite groups form part of the same solid-solution series. The distribution of Zn in corkite also reflects the regional distribution of zinc grades in the area, becoming more zinc-rich from west to east. New X-ray diffraction parameters are also presented which update existing data.


2007 ◽  
Vol 71 (3) ◽  
pp. 285-320 ◽  
Author(s):  
G. Tischendorf ◽  
H.-J. Förster ◽  
B. Gottesmann ◽  
M. Rieder

AbstractMicas incorporate a wide variety of elements in their crystal structures. Elements occurring in significant concentrations in micas include: Si, IVAl, IVFe3+, B and Be in the tetrahedral sheet; Ti, VIAl, VIFe3+, Mn3+, Cr, V, Fe2+, Mn2+, Mg and Li in the octahedral sheet; K, Na, Rb, Cs, NH4, Ca and Ba in the interlayer; and O, OH, F, Cl and S as anions. Extensive substitutions within these groups of elements form compositionally varied micas as members of different solid-solution series. The most common true K micas (94% of almost 6750 mica analyses) belong to three dominant solid-solution series (phlogopite–annite, siderophyllite–polylithionite and muscovite–celadonite). Theirclassification parameters include: Mg/(Mg+Fetot) [=Mg#] formicas with VIR >2.5 a.p.f.u. and VIAl <0.5 a.p.f.u.; Fetot/(Fetot+Li) [=Fe#] formicas with VIR >2.5 a.p.f.u. and VIAl >0.5 a.p.f.u.; and VIAl/(VIAl+Fetot+Mg) [=Al#] formicas with VIR <2.5 a.p.f.u. The common true K micas plot predominantly within and between these series and have Mg6Li <0.3 a.p.f.u. Tainiolite is a mica with Mg6Li >0.7 a.p.f.u., or, fortr ansitional stages, 0.3–0.7 a.p.f.u. Some true K mica end-members, especially phlogopite, annite and muscovite, form binary solid solutions with non-K true micas and with brittle micas (6% of the micas studied). Graphical presentation of true K micas using the coordinates Mg minus Li (= mgli) and VIFetot+Mn+Ti minus VIAl (= feal) depends on theirclassification according to VIR and VIAl, complemented with the 50/50 rule.


2014 ◽  
Vol 29 (2) ◽  
pp. 141-146 ◽  
Author(s):  
H. Pöllmann ◽  
R. Kaden

Calcium monoaluminate is the main phase in calcium aluminate cements and participates in the hydration, forming calcium aluminate hydrates. The amount of incorporation of foreign ions influences the hydration behaviour. Strontium aluminate is an important phase in producing phosphorescent materials when doped with rare-earth elements (REE) such as Eu, Dy, and La. These monoaluminates occur in different forms. Monocalcium aluminate forms a monoclinic and an orthorhombic modification, whereas monostrontium aluminate forms a monoclinic low-temperature and a hexagonal high-temperature form. Monoclinic calcium monoaluminate and monoclinic strontium aluminate form a partial solid-solution series. The hydration behaviour of different solid solutions was also investigated using calorimetry. The newly formed strontium aluminate hydrates could be identified while similar strontium aluminate hydrates are formed. Solid solutions of strontium- and calcium-aluminate hydrates will be investigated.


2004 ◽  
Vol 60 (5) ◽  
pp. 496-501 ◽  
Author(s):  
Ruslan P. Liferovich ◽  
Roger H. Mitchell

The crystal structures of members of the geikielite–ecandrewsite solid solution series, Mg1 − x Zn x TiO3 (0 ≤ x ≤ 0.8 a.p.f.u. Zn; a.p.f.u. = atoms per formula unit), synthesized by ceramic methods in air at ambient pressure, have been characterized by Rietveld analysis of X-ray powder diffraction patterns. These synthetic titanates adopt an ordered R\overline 3 structure similar to that of ilmenite. The maximum solubility of Zn in MgTiO3 is considered to be ∼ 0.8 a.p.f.u. Zn, as compounds with greater Zn content could not be synthesized at ambient conditions. Data are given for the cell dimensions and atomic coordinates, together with bond lengths, volumes and distortion indices for all the coordination polyhedra. Within the solid-solution series unit-cell parameters and unit-cell volumes increase with Zn content. All compounds consist of distorted (Mg,Zn)O6 and TiO6 polyhedra and, in common with geikielite and ilmenite (sensu lato), TiO6 polyhedra are distorted to a greater extent than (Mg,Zn)O6. The displacements of (Mg,Zn) and Ti from the centers of their coordination polyhedra vary insignificantly with increasing Zn content. The interlayer distance across the vacant octahedral site in the TiO6 layer decreases slightly with the entry of the larger Zn2+ cation into the vi A site. The empirically obtained upper limit of the Goldschmidt tolerance factor (t) for A 2+ BO3 compounds adopting an ordered R\overline 3 structure is 0.755. The absence of natural solid solutions between geikielite and ecandrewsite seems to be due to the contrasting geochemistry of Mg and Zn rather than for crystallochemical reasons.


2014 ◽  
Vol 2 (18) ◽  
pp. 6384-6395 ◽  
Author(s):  
Thorsten Schröder ◽  
Tobias Rosenthal ◽  
Nadja Giesbrecht ◽  
Stefan Maier ◽  
Ernst-Wilhelm Scheidt ◽  
...  

Solid solutions of GeTe, AgInTe2 and optionally AgSbTe2 (accessible via high-pressure synthesis or by quenching, depending on the phases’ In content) exhibit remarkable thermoelectric properties that clearly reflect transitions between metastable and stable phases.


Clay Minerals ◽  
1993 ◽  
Vol 28 (2) ◽  
pp. 255-273 ◽  
Author(s):  
G. Christidis ◽  
A. C. Dunham

AbstractThe chemistry of smectites from some bentonite deposits derived from intermediate rocks has been examined by electron microprobe methods. A large variation in chemical composition within very short distances, principally controlled by a well-defined negative relationship between Si and A1, and between A1VI and Fe 3+ and A1VI and Mg has been observed. On the other hand, Mg does not vary systematically with either Si or Fe3+. In several bentonites beidellite coexists with montmorillonite and there is a compositional transition between the two smectite minerals, implying the existence of a possible solid-solution series. This transition occurs only when Cheto-type montmorillonites are present, being absent for Wyoming-type montmorillonites. No compositional transition between Wyoming-and Cheto-type montmorillonite was observed. It is believed that the compositional variations reflect initial chemical gradients originated during the devitrification of the volcanic glass, due to the migration of chemical components.


1989 ◽  
Vol 53 (369) ◽  
pp. 120-123 ◽  
Author(s):  
J. M. Montel ◽  
F. Lhote ◽  
J. M. Claude

The synthesis of monazite was first reported by Radominsky (1875). Since then various methods have been used to synthesize various end members of the monazite solid solution series, mainly CePO4 and LaPO4 (e.g. Anthony, 1957, 1965). As part of an experimental study dealing with the solubility of monazite in granitic melts (Montel, 1986, 1987, and in prep.), the synthesis of some of the end members, as well as solid solutions, was achieved.


Author(s):  
Ю.Ж. Тулеушев ◽  
В.Н. Володин ◽  
Е.А. Жаканбаев ◽  
Б.М. Сукуров ◽  
А.Л. Козловский

AbstractSolid solutions (alloys) with a Cd concentration of 50.3–76.3 at % were synthesized for the first time in the form of coatings by ion–plasma sputtering and codeposition of ultrafine W and Cd particles. When coatings were formed by tungsten and cadmium nanolayers, the components dissolved mutually to produce solid solutions of one metal in the other. A solid solution of cadmium in tungsten was synthesized at Cd concentrations up to 60.9 at %. At a cadmium concentration of 68.6 at % in the coating, the crystalline structure of cadmium with an admixture of amorphous tungsten was produced. At 800°C, tungsten evaporated from tungsten–cadmium coatings to form porous tungsten. The results of examination of materials fabricated on the basis of porous tungsten are planned to be used in practice.


1971 ◽  
Vol 8 (3) ◽  
pp. 311-337 ◽  
Author(s):  
Ki-Tae Kim ◽  
B. J. Burley

Phase equilibria were determined in the P–T range of 0.5–10 Kb and 150–900 °C in the system NaAlSi3O8 – NaAlSiO4 – H2O. Two isobaric (2 Kb and 5.15 Kb) T–X phase diagrams (projected to a dry base) were completely determined and show that the stability field of analcite solid solutions has a large distorted pentagonal shape. The phase relations for the transition: nepheline hydrate I [Formula: see text] nepheline + H2O on the composition join NaAlSiO4 – H2O are not binary. It was found that there exists a narrow zone for the transition. The true P–T curve was found and determined in terms of a ternary univariant reaction: nepheline hydrate I + analcite [Formula: see text] nepheline + H2O. In the system NaAlSi3O8 – SiO2 – H2O, albite contains about 5 wt % silica in solid solution at 5.15 Kb and 670 °C.The equilibrium compositions of various univariant phases were determined essentially on the basis of the T–X phase diagrams. Another univariant reaction (zeolite species P = analcite + nepheline – hydrate I + H2O) was found at 2 Kb/215 °C and 5.15 Kb/235 °C and determined on a P–T projection. Three singular points were determined; two of them are located at 0.8 Kb/390 °C and 9.4 Kb/475 °C respectively on a univariant P–T curve for the reaction nepheline hydrate I + analcite = nepheline + H2O; the other one is located at 6 Kb/655 °C on a univariant P–T curve along which nepheline, analcite, liquid, and vapor coexist. The petrogenetic implication of analcite is discussed fully.


Sign in / Sign up

Export Citation Format

Share Document