X-ray Diffraction Procedures for Clay Mineral Identification

Author(s):  
G. Brown ◽  
G. W. Brindley
Author(s):  
W. W. Barker ◽  
W. E. Rigsby ◽  
V. J. Hurst ◽  
W. J. Humphreys

Experimental clay mineral-organic molecule complexes long have been known and some of them have been extensively studied by X-ray diffraction methods. The organic molecules are adsorbed onto the surfaces of the clay minerals, or intercalated between the silicate layers. Natural organo-clays also are widely recognized but generally have not been well characterized. Widely used techniques for clay mineral identification involve treatment of the sample with H2 O2 or other oxidant to destroy any associated organics. This generally simplifies and intensifies the XRD pattern of the clay residue, but helps little with the characterization of the original organoclay. Adequate techniques for the direct observation of synthetic and naturally occurring organoclays are yet to be developed.


2020 ◽  
Vol 46 (2) ◽  
pp. 237-251
Author(s):  
Tri Muji Susantoro ◽  
Asep Saepuloh ◽  
Fitriani Agustin ◽  
Ketut Wikantika ◽  
Agus Handoyo Harsolumakso

Clay Minerals ◽  
1996 ◽  
Vol 31 (3) ◽  
pp. 417-422 ◽  
Author(s):  
H. M. Köster

AbstractMineralogical and chemical heterogeneity within three standard clay mineral samples have been identified by X-ray diffraction and chemical analysis of various size-fractions. This heterogeneity is partly attributed to accessory minerals, but mostly to structural and compositional variations in the 2:1 layer minerals of different particle size in the same specimen.


Clay Minerals ◽  
1980 ◽  
Vol 15 (4) ◽  
pp. 445-451 ◽  
Author(s):  
D. C. Bain ◽  
J. D. Russell

AbstractThe main clay mineral in weathered basaltic rubble has been shown by X-ray diffraction, chemical, infrared and differential thermal methods to be an interstratification of montmorillonite, vermiculite and illite in the approximate ratio 2:1:1, the montmorillonite having some degree of segregation and the vermiculite and illite being randomly interstratified. All three components are dioctahedral, the swelling ones having a high tetrahedral charge, a large aluminium content, and very little iron. Despite the 50% montmorillonite content of the mineral, its infrared absorption pattern is generally illitic in character.


Clay Minerals ◽  
2010 ◽  
Vol 45 (2) ◽  
pp. 209-224 ◽  
Author(s):  
J. C. Martínez ◽  
J. A. Dristas ◽  
H.-J. Massonne ◽  
T. Theye

AbstractA general alteration pattern of two transitional clay mineral assemblages was determined by petrography and X-ray diffractometry studies at the Tandilia Late Proterozoic unconformity zone, around the Barker locality: (1) K-white mica + chlorite + calcite ± anatase-rutile ± secondary quartz (farther from the unconformity) and (2) pyrophyllite + K-white mica + Ti-rich hematite ± aluminium phosphate-sulphate minerals ± tourmaline ± anatase-rutile (closer to the unconformity). The local occurrence of Na in K-white micas and K-Na in pyrophyllite is described for the first time. Possible interlayering with intermediate K-Na mica and paragonite is indicated by detailed X-ray diffraction analyses. A negative Eu anomaly (Eu/Eu* = 0.24), strongly positive Eu anomaly (Eu/Eu* =11.7) and positive Ce anomaly characterized rapid changes from an unaltered basement to the most altered basement and sedimentary rocks at the unconformity. Aluminium phosphate-sulphate minerals dominate patterns of LREE. A model of hydrothermal alteration comparable to that of unconformity-related uranium deposits is presented.


1992 ◽  
Vol 70 (7) ◽  
pp. 1927-1931 ◽  
Author(s):  
N. K. Labhsetwar ◽  
O. P. Shrivastava

Montmorillonite is a natural layered clay mineral having myriad applications due mainly to its remarkable ion exchange, intercalation, and swelling properties. It can act as a good host for several compounds. Two intercalated coordination compounds of Cu(II) and Ni(II) with 2,2′-bipyridyl have been prepared in the interlayer spaces of montmorillonite structure. They are characterized on the basis of elemental analysis, infrared spectroscopy, magnetic studies, and X-ray diffraction. Both compounds show similarity in their structure and properties with the respective normal complexes of similar composition. These compounds show good thermal stability. The present intercalated compounds might be useful for their nitrogen-immobilizing properties and high-temperature applications.


Sign in / Sign up

Export Citation Format

Share Document