scholarly journals Gene Therapy for β-Thalassemia

Hematology ◽  
2005 ◽  
Vol 2005 (1) ◽  
pp. 45-50 ◽  
Author(s):  
Punam Malik ◽  
Paritha I. Arumugam

AbstractGene transfer for β-thalassemia requires gene transfer into hematopoietic stem cells using integrating vectors that direct regulated expression of β globin at therapeutic levels. Among integrating vectors, oncoretroviral vectors carrying the human β-globin gene and portions of the locus control region (LCR) have suffered from problems of vector instability, low titers and variable expression. In recent studies, human immunodeficiency virus–based lentiviral (LV) vectors were shown to stably transmit the human β-globin gene and a large LCR element, resulting in correction of β-thalassemia intermedia in mice. Several groups have since demonstrated correction of the mouse thalassemia intermedia phenotype, with variable levels of β-globin expression. These levels of expression were insufficient to fully correct the anemia in thalassemia major mouse model. Insertion of a chicken hypersensitive site-4 chicken insulator element (cHS4) in self-inactivating (SIN) LV vectors resulted in higher and less variable expression of human β-globin, similar to the observations with cHS4-containing retroviral vectors carrying the human γ-globin gene. The levels of β-globin expression achieved from insulated SIN-LV vectors were sufficient to phenotypically correct the thalassemia phenotype from 4 patients with human thalassemia major in vitro, and this correction persisted long term for up to 4 months, in xeno-transplanted mice in vivo. In summary, LV vectors have paved the way for clinical gene therapy trials for Cooley’s anemia and other β-globin disorders. SIN-LV vectors address several safety concerns of randomly integrating viral vectors by removing viral transcriptional elements and providing lineage-restricted expression. Flanking the proviral cassette with chromatin insulator elements, which additionally have enhancer-blocking properties, may further improve SIN-LV vector safety.

Hematology ◽  
2010 ◽  
Vol 2010 (1) ◽  
pp. 445-450 ◽  
Author(s):  
Paritha Arumugam ◽  
Punam Malik

AbstractBeta-thalassemia is a genetic disorder with mutations in the β-globin gene that reduce or abolish β-globin protein production. Patients with β-thalassemia major (Cooley's anemia) become severely anemic by 6 to 18 months of age, and are transfusion dependent for life, while those with thalassemia intermedia, a less-severe form of thalassemia, are intermittently or rarely transfused. An allogeneically matched bone marrow transplant is curative, although it is restricted to those with matched donors. Gene therapy holds the promise of “fixing” one's own bone marrow cells by transferring the normal β-globin or γ-globin gene into hematopoietic stem cells (HSCs) to permanently produce normal red blood cells. Requirements for effective gene transfer for the treatment of β-thalassemia are regulated, erythroid-specific, consistent, and high-level β-globin or γ-globin expression. Gamma retroviral vectors have had great success with immune-deficiency disorders, but due to vector-associated limitations, they have limited utility in hemoglobinopathies. Lentivirus vectors, on the other hand, have now been shown in several studies to correct mouse and animal models of thalassemia. The immediate challenges of the field as it moves toward clinical trials are to optimize gene transfer and engraftment of a high proportion of genetically modified HSCs and to minimize the adverse consequences that can result from random integration of vectors into the genome by improving current vector design or developing novel vectors. This article discusses the current state of the art in gene therapy for β-thalassemia and some of the challenges it faces in human trials.


Blood ◽  
1988 ◽  
Vol 71 (3) ◽  
pp. 742-747 ◽  
Author(s):  
RB Stead ◽  
WW Kwok ◽  
R Storb ◽  
AD Miller

Successful retroviral gene transfer into murine hematopoietic stem cells indicates the potential for somatic gene therapy in the treatment of certain human hereditary diseases. We developed a canine model to test the applicability of these techniques to a preclinical model of human marrow transplantation. Previously we reported that canine CFU-GM could be infected with retroviral vectors carrying either the gene for a mutant dihydrofolate reductase (DHFR) or neomycin phosphotransferase (NEO). This study reports six lethally irradiated dogs transplanted with autologous marrow cocultivated with retroviral vector-producing cells. This procedure conferred drug resistance to 3% to 13% of the CFU- GM. Three dogs infected with either the NEO or DHFR virus engrafted, but we detected no drug-resistant CFU-GM. Three dogs were given marrow infected with a DHFR virus and received methotrexate (MTX) as in vivo selection; all three had evidence of engraftment. In the surviving dog, we detected 0.03% to 0.1% MTX-resistant CFU-GM at 3 to 5 weeks posttransplant during in vivo selection. These results indicate that we can reconstitute lethally irradiated dogs with autologous marrow exposed to retroviral vectors and suggest that gene transfer into hematopoietic cells is feasible on a large scale. However, the low- level transient gene expression indicates that considerable obstacles remain before human gene therapy can be considered.


Blood ◽  
1988 ◽  
Vol 71 (3) ◽  
pp. 742-747 ◽  
Author(s):  
RB Stead ◽  
WW Kwok ◽  
R Storb ◽  
AD Miller

Abstract Successful retroviral gene transfer into murine hematopoietic stem cells indicates the potential for somatic gene therapy in the treatment of certain human hereditary diseases. We developed a canine model to test the applicability of these techniques to a preclinical model of human marrow transplantation. Previously we reported that canine CFU-GM could be infected with retroviral vectors carrying either the gene for a mutant dihydrofolate reductase (DHFR) or neomycin phosphotransferase (NEO). This study reports six lethally irradiated dogs transplanted with autologous marrow cocultivated with retroviral vector-producing cells. This procedure conferred drug resistance to 3% to 13% of the CFU- GM. Three dogs infected with either the NEO or DHFR virus engrafted, but we detected no drug-resistant CFU-GM. Three dogs were given marrow infected with a DHFR virus and received methotrexate (MTX) as in vivo selection; all three had evidence of engraftment. In the surviving dog, we detected 0.03% to 0.1% MTX-resistant CFU-GM at 3 to 5 weeks posttransplant during in vivo selection. These results indicate that we can reconstitute lethally irradiated dogs with autologous marrow exposed to retroviral vectors and suggest that gene transfer into hematopoietic cells is feasible on a large scale. However, the low- level transient gene expression indicates that considerable obstacles remain before human gene therapy can be considered.


Blood ◽  
2007 ◽  
Vol 110 (13) ◽  
pp. 4175-4178 ◽  
Author(s):  
Leszek Lisowski ◽  
Michel Sadelain

Globin gene transfer in autologous hematopoietic stem cells is a promising therapeutic option for subjects with β-thalassemia major. In this approach, high level, erythroid-specific globin transgene expression should correct ineffective erythropoiesis and hemolytic anemia following the delivery of only 1 to 2 vector copies per cell. The generation of vectors that provide high-level globin expression and require low vector copy (VC) integration is therefore essential for both safety and efficacy. We show here the major roles played by 2 lesser-known locus control region elements, termed HS1 and HS4. Partial deletions within HS4 markedly reduce in vivo globin expression requiring multiple VC per cell to correct the anemia. Most strikingly, addition of HS1 to HS2-3-4 increases globin expression by 52%, yielding 9 g Hb/VC in β-thalassemic mice. Thus, while vectors encoding HS2-3-4 provide curative levels of hemoglobin at 1 to 2 copies per cell, adding HS1 is a promising alternative strategy if upcoming clinical trials prove higher levels of expression to be necessary.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 549
Author(s):  
Laura Garcia-Perez ◽  
Anita Ordas ◽  
Kirsten Canté-Barrett ◽  
Pauline Meij ◽  
Karin Pike-Overzet ◽  
...  

Recent clinical trials using patient’s own corrected hematopoietic stem cells (HSCs), such as for primary immunodeficiencies (Adenosine deaminase (ADA) deficiency, X-linked Severe Combined Immunodeficiency (SCID), X-linked chronic granulomatous disease (CGD), Wiskott–Aldrich Syndrome (WAS)), have yielded promising results in the clinic; endorsing gene therapy to become standard therapy for a number of diseases. However, the journey to achieve such a successful therapy is not easy, and several challenges have to be overcome. In this review, we will address several different challenges in the development of gene therapy for immune deficiencies using our own experience with Recombinase-activating gene 1 (RAG1) SCID as an example. We will discuss product development (targeting of the therapeutic cells and choice of a suitable vector and delivery method), the proof-of-concept (in vitro and in vivo efficacy, toxicology, and safety), and the final release steps to the clinic (scaling up, good manufacturing practice (GMP) procedures/protocols and regulatory hurdles).


Blood ◽  
1997 ◽  
Vol 90 (9) ◽  
pp. 3414-3422 ◽  
Author(s):  
Harry Raftopoulos ◽  
Maureen Ward ◽  
Philippe Leboulch ◽  
Arthur Bank

Abstract Somatic gene therapy of hemoglobinopathies depends initially on the demonstration of safe, efficient gene transfer and long-term, high-level expression of the transferred human β-globin gene in animal models. We have used a β-globin gene/β-locus control region retroviral vector containing several modifications to optimize gene transfer and expression in a mouse transplant model. In this report we show that transplantation of β-globin–transduced hematopoietic cells into lethally irradiated mice leads to the continued presence of the gene up to 8 months posttransplantation. The transferred human β-globin gene is detected in 3 of 5 mice surviving long term (>4 months) transplanted with bone marrow cells transduced with high-titer virus. Southern blotting confirms the presence of the unrearranged 5.1-kb human β-globin gene-containing provirus in 2 of these mice. In addition, long-term expression of the transferred gene is seen in 2 mice at levels of 5% and 20% that of endogenous murine β-globin at 6 and 8 months posttransplantation. We further document stem cell transduction by the successful transfer and high-level expression of the human β-globin gene from mice transduced 9 months earlier into irradiated secondary recipient mice. These results demonstrate high-level, long-term somatic human β-globin gene transfer into the hematopoietic stem cells of an animal for the first time, and suggest the potential feasibility of a retroviral gene therapy approach to sickle cell disease and the β thalassemias.


Blood ◽  
2009 ◽  
Vol 114 (15) ◽  
pp. 3216-3226 ◽  
Author(s):  
Aisha V. Sauer ◽  
Emanuela Mrak ◽  
Raisa Jofra Hernandez ◽  
Elena Zacchi ◽  
Francesco Cavani ◽  
...  

Abstract Adenosine deaminase (ADA) deficiency is a disorder of the purine metabolism leading to combined immunodeficiency and systemic alterations, including skeletal abnormalities. We report that ADA deficiency in mice causes a specific bone phenotype characterized by alterations of structural properties and impaired mechanical competence. These alterations are the combined result of an imbalanced receptor activator of nuclear factor-κB ligand (RANKL)/osteoprotegerin axis, causing decreased osteoclastogenesis and an intrinsic defect of osteoblast function with subsequent low bone formation. In vitro, osteoblasts lacking ADA displayed an altered transcriptional profile and growth reduction. Furthermore, the bone marrow microenvironment of ADA-deficient mice showed a reduced capacity to support in vitro and in vivo hematopoiesis. Treatment of ADA-deficient neonatal mice with enzyme replacement therapy, bone marrow transplantation, or gene therapy resulted in full recovery of the altered bone parameters. Remarkably, untreated ADA–severe combined immunodeficiency patients showed a similar imbalance in RANKL/osteoprotegerin levels alongside severe growth retardation. Gene therapy with ADA-transduced hematopoietic stem cells increased serum RANKL levels and children's growth. Our results indicate that the ADA metabolism represents a crucial modulatory factor of bone cell activities and remodeling. The trials were registered at www.clinicaltrials.gov as #NCT00598481 and #NCT00599781.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 341-341
Author(s):  
Silvia Bakovic ◽  
Patricia M. Rosten ◽  
Connie J. Eaves ◽  
R. Keith Humphries

Abstract The ultimate promise of gene therapy for patients with hemoglobinopathies depends on the development of safe strategies for achieving 2 goals. One is to obtain efficient and permanent correction of the gene defect in autologous hematopoietic stem cells (HSCs). The second is to develop methods for the pre-transplant amplification of transduced HSCs to high levels to ensure that they will outcompete the large residual endogenous HSC population remaining in non-myeloablated hosts (e.g. previous experiments have shown that a minimum of ~5 × 106 normal adult mouse bone marrow (BM) cells (~500 HSC) is required to achieve a level of chimerism of 20% in mice given 200 cGy). The ability of HOXB4 to promote HSC self-renewal divisions in short term culture prior to their use as transplants offers an attractive approach to achieve this latter goal. As a first test we transduced day-4 5FU BM cells from normal mice with a MSCV-HOXB4-IRES-GFP or control MSCV-IRES-GFP virus and then transplanted the cells either before or after 7 days maintenance in vitro into normal recipients given 250 cGy. Mice transplanted with an estimated 50 HSCs immediately after transduction with either virus reached equivalent low levels of chimerism (~10%) showing that HOXB4 does not impart an in vivo selective growth advantage under sublethal conditions. After ex vivo culture, the GFP transduced cells yielded an even lower level of chimerism (~5%), in contrast recipients of cultured HOXB4-transduced cells attained much higher stable levels of lympho-myeloid chimerism (~50%), indicative of a marked expansion of the HSCs pre-transplant and their retention of robust competitive repopulating potential. We then applied this approach to a gene therapy model of severe β-thalassemia in mice bearing a homozygous deletion of the β-major globin gene (β-MDD). To model a transplant of genetically corrected cells, BM cells were harvested from day-4 5FU pre-treated congenic wild-type donors and transduced with the HOXB4 virus. Cells were then cultured for 10 days and the progeny of 200K starting cells transplanted into 3 β-MDD and 4 normal recipients given 200 cGy. Transplantation of 500K freshly harvested day-4 5FU BM cells into 4 similarly conditioned control mice failed to produce significant chimerism (1–3% at 5 months). In contrast, all 4 control recipients of ex vivo expanded HOXB4-transduced cells exhibited significant stable chimerism (21±6% at 5 months). Similar levels of chimerism were also achieved in all 3 β-MDD recipients (18–76%), one of which was sustained at 34% at 5 months (52% in the RBCs). This was associated with substantial improvement in the Hct (36% vs 23% in untreated β-MDD), Hb (10.5 vs 5 g/dl) and RBC morphology. Southern blot analyses performed on 53 individual in vitro-expanded myeloid colonies generated from FACS-selected GFP+ marrow cells from this mouse 2 months post-transplant showed 19 distinct integration patterns indicating reconstitution from polyclonal expanded HSCs. This conclusion was further confirmed by proviral integration site analyses, which identified 13 separate integration sites from 9 colonies that had unique proviral patterns. These data demonstrate the curative potential of ex vivo expanded HSCs in a preclinical model of β-thalassemia treated with non-myeloablative conditioning. They also underscore the potential of HOXB4 as a potent tool to achieve the HSC expansions required.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3249-3249
Author(s):  
Barbara Cassani ◽  
Grazia Andolfi ◽  
Massimiliano Mirolo ◽  
Luca Biasco ◽  
Alessandra Recchia ◽  
...  

Abstract Gene transfer into hematopoietic stem/progenitor cells (HSC) by gammaretroviral vectors is an effective treatment for patients affected by severe combined immunodeficiency (SCID) due to adenosine deaminase (ADA)-deficiency. Recent studied have indicated that gammaretroviral vectors integrate in a non-random fashion in their host genome, but there is still limited information on the distribution of retroviral insertion sites (RIS) in human long-term reconstituting HSC following therapeutic gene transfer. We performed a genome-wide analysis of RIS in transduced bone marrow-derived CD34+ cells before transplantation (in vitro) and in hematopoietic cell subsets (ex vivo) from five ADA-SCID patients treated with gene therapy combined to low-dose busulfan. Vector-genome junctions were cloned by inverse or linker-mediated PCR, sequenced, mapped onto the human genome, and compared to a library of randomly cloned human genome fragments or to the expected distribution for the NCBI annotation. Both in vitro (n=212) and ex vivo (n=496) RIS showed a non-random distribution, with strong preference for a 5-kb window around transcription start sites (23.6% and 28.8%, respectively) and for gene-dense regions. Integrations occurring inside the transcribed portion of a RefSeq genes were more represented in vitro than ex vivo (50.9 vs 41.3%), while RIS <30kb upstream from the start site were more frequent in the ex vivo sample (25.6% vs 19.4%). Among recurrently hit loci (n=50), LMO2 was the most represented, with one integration cloned from pre-infusion CD34+ cells and five from post-gene therapy samples (2 in granulocytes, 3 in T cells). Clone-specific Q-PCR showed no in vivo expansion of LMO2-carrying clones while LMO2 gene overexpression at the bulk level was excluded by RT-PCR. Gene expression profiling revealed a preference for integration into genes transcriptionally active in CD34+ cells at the time of transduction as well as genes expressed in T cells. Functional clustering analysis of genes hit by retroviral vectors in pre- and post-transplant cells showed no in vivo skewing towards genes controlling self-renewal or survival of HSC (i.e. cell cycle, transcription, signal transduction). Clonal analysis of long-term repopulating cells (>=6 months) revealed a high number of distinct RIS (range 42–121) in the T-cell compartment, in agreement with the complexity of the T-cell repertoire, while fewer RIS were retrieved from granulocytes. The presence of shared integrants among multiple lineages confirmed that the gene transfer protocol was adequate to allow stable engraftment of multipotent HSC. Taken together, our data show that transplantation of ADA-transduced HSC does not result in skewing or expansion of malignant clones in vivo, despite the occurrence of insertions near potentially oncogenic genomic sites. These results, combined to the relatively long-term follow-up of patients, indicate that retroviral-mediated gene transfer for ADA-SCID has a favorable safety profile.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 197-197
Author(s):  
Masami Niiya ◽  
Masayuki Endo ◽  
Philip W. Zoltick ◽  
Nidal E. Muvarak ◽  
David G. Motto ◽  
...  

Abstract ADAMTS13, a member of A Disintegrin and Metalloprotease with ThromboSpondin type 1 repeats (ADAMTS) family, is mainly synthesized in the hepatic stellate cells, endothelial cells and megakaryocytes or platelets. It controls the sizes of von Willebrand factor (VWF) multimers by cleaving VWF at the Tyr1605-Met1606 bond. Genetic deficiency of plasma ADAMTS13 activity results in hereditary thrombotic thrombocytopenic purpura (TTP), also named Upshaw-Schülman syndrome. To develop a potential gene therapy approach and to determine the domains of ADAMTS13 required for recognition and cleavage of VWF in vivo, a self-inactivating lentiviral vector encoding human wild-type ADAMTS13 or variant truncated after the spacer domain (construct MDTCS) was administrated by intra-amniotic injection on embryonic day 8. Direct stereomicroscopy and immunofluorescent microscopic analysis revealed that the green fluorescent protein (GFP) reporter, ADAMTS13 and MDTCS were predominantly expressed in the heart, kidneys and skin. The synthesized ADAMTS13 and truncated variant were detectable in mouse plasma by immunoprecipitation and Western blot, as well as by proteolytic cleavage of FRETS-VWF73 substrate. The levels of proteolytic activity in plasma of mice expressing ADAMTS13 and MDTCS were 5 ± 7% and 60 ± 70%, respectively using normal human plasma as a standard, and this proteolytic activity persisted for at least 24 weeks in Adamts13−/−mice and 42 weeks in wild-type mice tested (the duration of observation). The mice expressing both recombinant ADAMTS13 and MDTCS showed a significantly decreased ratio of plasma VWF collagen-binding activity to antigen and a reduction in VWF multimer sizes as compared to those in the controls. Moreover, the mice expressing ADAMTS13 and MDTCS showed a significant prolongation of ferric chloride-induced carotid arterial occlusion time (9.0 ± 0.6 and 25.2 ± 3.2 min, respectively) as compared to the Adamts13−/− mice expressing GFP alone (5.6 ± 0.5 min) (p&lt;0.01). The ferric chloride-induced carotid occlusion time in Adamts13−/− mice expressing ADAMTS13 was almost identical to that in wild type mice with same genetic background (C56BL/6) (8.0 ± 0.2 min) (p&gt;0.05). The data demonstrate the correction of the prothrombotic phenotype in Adamts13−/−mice by gene transfer to the fetus by viral vectors encoding human wild type ADAMTS13 and the carboxyl terminal truncated variant (MDTCS), supporting the feasibility of developing a gene therapy based treatment for hereditary TTP. The discrepancy in the proteolytic activity of MDTCS between in vitro (Zhang P et al. Blood, 2007 in press) and in vivo in the present study suggests the potential cofactors in murine circulation that may rescue the defective proteolytic activity of the carboxyl-terminal truncated ADAMTS13 protease seen in vitro.


Sign in / Sign up

Export Citation Format

Share Document