scholarly journals FLT3 mutations in acute myeloid leukemia: what is the best approach in 2013?

Hematology ◽  
2013 ◽  
Vol 2013 (1) ◽  
pp. 220-226 ◽  
Author(s):  
Mark Levis

Abstract Patients with acute myeloid leukemia who harbor an FMS-like tyrosine kinase 3 (FLT3) mutation present several dilemmas for the clinician. The results of an FLT3 mutation test, which can be influenced by several variables, need to be interpreted according to the clinical setting and there is a need for internationally standardized FLT3 mutation assays. Because of the lack of prospective studies, the role of allogeneic transplantation as consolidation therapy is still somewhat controversial, but the preponderance of evidence suggests that transplantation in first remission, if possible, is probably the best option. Clinically useful FLT3 inhibitors are hopefully on the near horizon and are being studied in the context of current treatment paradigms.

Haematologica ◽  
2020 ◽  
Author(s):  
Alisa Damnernsawad ◽  
Daniel Bottomly ◽  
Stephen E. Kurtz ◽  
Christopher A. Eide ◽  
Shannon K. McWeeney ◽  
...  

Drug resistance impedes the long-term effect of targeted therapies in acute myeloid leukemia (AML), necessitating the identification of mechanisms underlying resistance. Approximately 25% of AML patients carry FLT3 mutations and develop post-treatment insensitivity to FLT3 inhibitors, including sorafenib. Using a genome-wide CRISPR screen, we identified LZTR1, NF1, TSC1 or TSC2, negative regulators of the MAPK and MTOR pathways, as mediators of sorafenib resistance. Analyses of ex vivo drug sensitivity assays in FLT3-ITD AML patient samples revealed lower expression of LZTR1, NF1, and TSC2 correlated with sorafenib sensitivity. Importantly, MAPK and/or MTOR complex1 (MTORC1) activity were upregulated in AML cells made resistant to several FLT3 inhibitors, including crenolanib, quizartinib, or sorafenib. These cells were sensitive to MEK inhibitors, and the combination of FLT3 and MEK inhibitors showed enhanced efficacy, suggesting its effectiveness in AML patients with FLT3 mutations and those with resistance to FLT3 inhibitors.


2020 ◽  
Vol 12 (10) ◽  
pp. 961-981 ◽  
Author(s):  
Lexian Tong ◽  
Xuemei Li ◽  
Yongzhou Hu ◽  
Tao Liu

Fms-like tyrosine kinase-3 (FLT3) mutations occur in approximately 30% of acute myeloid leukemia (AML) cases, suggesting FLT3 as an attractive target for AML treatment. Early FLT3 inhibitors enhance antileukemia efficacy by inhibiting multiple targets, and thus had stronger off-target activity, increasing their toxicity. Recently, a number of potent and selective FLT3 inhibitors have been developed, many of which are effective against multiple mutations. This review outlines the evolution of AML-targeting FLT3 inhibitors by focusing on their chemotypes, selectivity and activity over FLT3 wild-type and FLT3 mutations as well as new techniques related to FLT3. Compounds that currently enter the late clinical stage or have entered the market are also briefly reported.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3949-3949
Author(s):  
Paolo Strati ◽  
Hagop M Kantarjian ◽  
Aziz Nazha ◽  
Gautam Borthakur ◽  
Naval G. Daver ◽  
...  

Abstract Background Acute Myeloid Leukemia (AML) and Myelodysplastic Syndrome (MDS) affect primarily elderly pts. Their treatment with aggressive chemotherapy is frequently challenging. Moreover, pts with FLT3 mutations have very poor prognosis. We hypothesized that the combination of midostaurin, a FLT3 inhibitor, and 5-AZA, a hypomethylating agent, may be an effective and safe regimen. Methods Both untreated (8) and previously treated (36) pts with AML or MDS were eligible for this study, regardless of FLT3 mutation and prior exposure to FLT3 inhibitors. Pts received 5-AZA 75 mg/mq subcutaneously or intravenously on day 1-7 and midostaurin 25 mg bid (in cohort 1 of phase I) or 50 mg bid (in cohort 2 of Phase I and in Phase II) orally on day 8-21 during the first cycle and continuously thereafter, for 12 cycles of 28 days duration. Cytogenetic risk was defined according to MRC criteria. Differences between categorical variables were compared by the chi2 test. CR duration (CRD) was calculated from the time of CR achievement until relapse and estimated by the Kaplan-Meier method and compared by the log-rank test. Results Fourty-four pts were enrolled, 13 included in Phase I and 31 in Phase II. Baseline pts’ characteristics are shown in the Table. Thirty-eight pts (86%) received 50 mg bid of midostaurin, and 6 (14%; Phase I) received 25 mg bid. The median number of administered cycles was 2 (1-9). Grade 3-4 hematological toxicities consisted of 95% neutropenia, 64% anemia and 93% thrombocytopenia. Grade 3-4 non-hematological toxicities consisted of 45% infections, 23% hypokalemia, 16% hyponatremia, 7% reduction in ejection fraction, 7% hyperuricemia, 4% hyperglycemia, 4% nausea/vomiting, 4% QTc prolongation, 4% hyperbilirubinemia, and 4% elevated AST. Eleven pts (25%) achieved a CR, 9 with incomplete platelet recovery (20%), after a median time of 13 (10-16) weeks from treatment start. Five (11%) of these pts relapsed after achieving CR. Two pts (5%) received an allogeneic stem cell transplant while on study, one in CR and one primary refractory (after a blast count drop from 27 to 7%), and they are both still in CR and alive. Among 26 pts with FLT3 ITD and no D835 mutation, 9 (35%) achieved CR/CRp. Six of 18 (33%) pts not previously exposed to FLT3 inhibitors responded. There was no significant correlation of dose with response (24% with 50 mg bid vs 33% with 25 mg bid, p=0.63). After a median follow-up of 15 (3-72) weeks, 20 pts (64%) died, 3 (7%) while on study (2 died of sepsis, 1 of unknown causes with progressive disease). The median CRD was 16 (9-23) months. Factors significantly associated with a longer CRD were male sex (p=0.04), age older than 65 years (0.03) and use of 50 mg bid of midostaurin (p=0.02). Conclusions The combination of midostaurin and 5-AZA is safe and well tolerated. Its efficacy is most noticeable among pts with FLT3 mutations. A longer response duration is observed using midostaurin at 50 mg bid dose and in elderly male pts. Disclosures: Ravandi: CELGENE: Honoraria; NOVARTIS: Honoraria. Cortes:ARIAD: Consultancy, Research Funding; ASTELLAS: Research Funding; AMBIT: Research Funding; AROG: Research Funding; NOVARTIS: Research Funding.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4979-4979 ◽  
Author(s):  
Jorge Cuervo-Sierra ◽  
David Gómez-Almaguer ◽  
Jose Carlos Jaime-Pérez ◽  
Ramón Alejandro Martínez-Hernández ◽  
Ricardo David García Sepúlveda ◽  
...  

Abstract In acute myeloid leukemia (AML), FLT3 mutations are associated with a poor prognosis, particularly the internal tandem duplication (ITD/FLT3). In Latin America there are few  epidemiological data about these mutations.This study assessed the prevalence of FLT3 mutations in patients with AML at four reference hematology centers from Latin America. We included 138 samples of patients attending the Hematology Service of three Mexican University Hospitals (Monterrey,México D.F. and Puebla) and one Colombian center (Medellín) with a diagnosis of AML from different morphologic subgroups according to the French-American-British classification from 2006 to 2011. AML was diagnosed by morphology according to the FAB classification, by immunohistochemical staining and/or by immunophenotype according to each particular case. For sample processing DNA was extracted from peripheral blood or bone marrow with the automatic Maxwell®16 System (Promega Corporation, Madison, WI) using the principle of cellular lyses and binding nucleic acids to magnetized silice particles or the QIAAmp DNA Blood Kit (QIAGEN, Mexico City). The quality and DNA concentration was evaluated with the NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies, Inc., Wilmington, DE). Then  internal tandem duplication and kinase domain mutations detection was performed with the GeneAmp PCR System 9700 (Applied Biosystems, Foster City, CA), through amplification of exons 14,15 with specific primers of FLT3 gen region, using the Seeplex® FLT3 Genotyping kit (Seegene, Rockville, MD, USA) or according to Kottaridis et al (1). Later, an electrophoretic analysis of the amplified products was made in a 2% agarose gel stained with ethidium bromide or in polyacrylamide gel electrophoresis (PAGE) and were observed by transilumination. In the Puebla samples the products were analyzed by capillary electrophoresis (ABI3130, Applied Biosystems, Foster City, CA). For detection of D835X mutations the exon 20 amplicom was subjected to digestion with EcoRV and analyzed by 4.5% PAGE. The patients were cytogenetically classified into three risk groups: favorable, intermediate, and adverse. Results We analyzed 138 samples of AML patients and found FLT3 mutations in 28 patients, for a prevalence of 20.3%. The median age was 47 years (5-96). Only four patients had the KD FLT3 mutation (3% of total population). The FLT3 mutation positive group was older than the negative (47 vs. 39 years), had higher WBC/mm3 (66.0 vs. 56.4 x 109/dl), higher hemoglobin values (9.3 vs. 8.6 g/dl), and lower platelet counts (72.6 vs. 92.5 x109/dl), although there were not statistically significant differences. Thirteen patients had AML M2, nine the monocytic variety, four had M3 and two M1. On cytogenetics  25% , 62.5% and 12.5% had favorable, intermediate and unfavorable risk karyotypes respectively. The rate response to standard Induction Chemotherapy was 78.3 % for the FLT3 positive group vs. 74.1 % for the non-mutated group. Nineteen of 28 patients (67.8%) with FLT3 mutations died, compared to 47 of 100 (42.72%) in those without the mutation. The median survival was 4.9 months for the FLT3 mutated group vs 20.4 months for the FLT3 negative group, P= 0.009.  The cytogenetic intermediate risk group (62.5%) was further analyzed and no statistically significant difference in overall survival between FLT3 non-mutated and FLT3 mutated patients was found (P= 0.22). Younger patients (<55 years)  had a higher mortality in the FLT3 positive group (P = 0.023).The presence or absence of the FLT3 mutation in patients who had the morphologic subtype M3 did not impact mortality (P = 0.28), but in non M3 subtypes, it did (P= 0.017). As conclusion, in this Latin American population the FLT3 mutation conferred a bad prognosis. References 1. Kottaridis PD, Gale RE,Frew ME et al. The presence of  a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds importatnt prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood.2001; 98: 1752-1759 2. Emerenciano M, Meneses J, Vasquez ML et al, Brazilian Collaborative Study Groupof Infant Acute L. Clinical relevance of FLT3 gene abnormalities in Brazilian patients with infant leukemia.Leuk Lymphoma. 2008; 49 (12):2291-2297. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Maria Rogdaki ◽  
Xinhua Xiao

FLT3 mutations are among the most common genetic alterations in acute-myeloid leukemia (AML). They are associated with poor prognosis. Multiple FLT3 inhibitors have been in clinical evaluation at various stages. Resistance to FLT3 inhibitors due to acquired point mutations in the tyrosine-kinase domain (TKD), have limited the effectiveness of treatments. A “gatekeeper” mutation (F691L), is also resistant to most FLT3 inhibitors. New therapies are therefore needed. FLT3 inhibitors are needed to protect against FLT3-TKD mutations and FLT3 internal tandem duplicate (FLT3–ITD). We identified KX2-391, a dual FLT3/tubulin inhibitor, and examined its efficacy and mechanisms for overcoming drug-resistant FLT3ITD-TKD mutations. KX2-391 had potent growth inhibitory effects and apoptosis promoting effects on AML cell lines that harbor FLT3-ITD mutations. KX2-391 orally administered significantly prolonged the survival time of a murine model with leukemia caused by FLT3ITD-F691L. KX2-391 also inhibited growth of primary AML cells that express FLT3ITD-F691L and 2 primary cells that are FLT3ITD-D835Y. Preclinical data suggest that KX2-391 is a promising FLT3 inhibitor. The treatment of AML patients with FLT3 mutations, particularly refractory/relapsed patients suffering from F691L or other FLT3TKD mutations.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2164-2164
Author(s):  
Lisa O. Sproat ◽  
Brian Bolwell ◽  
Lisa Rybicki ◽  
Matt Kalaycio ◽  
Robert Dean ◽  
...  

Abstract Despite a lack of evidence that postremission consolidation chemotherapy improves outcome of allogeneic transplantation in patients with acute myeloid leukemia (AML) in first remission, high dose cytarabine and other regimens are commonly administered to these patients. We studied a consecutive cohort of 73 adult patients with AML at high risk of relapse by published criteria who underwent allogeneic transplantation in first remision to determine whether specific patient and treatment characteristics identified subgroups of patients who might benefit from consolidation therapy prior to allogeneic transplantation. Pretransplant cytogenetics were available for 56 patients. Transplantation occurred between 1988 and 2008. The primary analysis grouped patients according to cytogenetic risk (poor versus intermediate) and consolidation chemotherapy (yes versus no). Consolidation Chemotherapy No Consolidation Chemotherapy None of the measured outcomes (relapse mortality (RM), non-relapse mortality (NRM), overall survival (OS)) differed significantly between groups. Poor Risk Cytogenetics 9 13 Intermediate Risk 18 16 Cytogenetics P Values for Consolidation Versus No Consolidation by Cytogenetic Risk Poor Risk Cytogenetics Intermediate Risk Cytogenetics When cytogenetic risk was not stratified the results between consolidation and no consolidation were also not significant. RM 0.95 0.74 NRM 0.73 0.19 OS 0.77 0.21 P Values for Consolidation Versus No Consolidation RM 0.70 NRM 0.12 OS 0.14 Neither this study nor others provide evidence that consolidation chemotherapy is beneficial to all patients with AML in first remission who undergo allogeneic transplant or to cytogenetic subgroups. Delays in referral to a transplant center, in tissue typing or physician preference to administer consolidation chemotherapy are not justified and expose patients to the inconvenience, risk, and cost of unnecessary treatment. Clinicians should avoid consolidation chemotherapy and expedite allogeneic transplantion in patients with AML in first remission in whom transplantation is the preferred treatment.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2597-2597
Author(s):  
Kensuke Kojima ◽  
Marina Konopleva ◽  
Twee Tsao ◽  
Michael Andreeff ◽  
Hiroshi Ishida ◽  
...  

Abstract Abstract 2597 Poster Board II-573 Introduction: Activating mutations of the Fms-like tyrosine kinase-3 gene (FLT3) occur in approximately 30–40% of acute myeloid leukemia (AML) patients. FLT3 mutations confer numerous oncogenic properties, including dysregulated proliferation, resistance to apoptosis and a block in differentiation. FLT3 mutations result in abnormal activation of the downstream pathways, including signal transducer and activator of transcription 5 (STAT5), mitogen-activated protein kinase kinase (Mek)/extracellular signal–regulated kinase (Erk) and phosphatidylinositol-3 kinase (PI3K)/Akt. Activation of these downstream effectors has been thought to allow leukemia cells to evade apoptosis. Targeting of FLT3 mutations is a promising approach to overcome the dismal prognosis of acute myeloid leukemia (AML) with activating FLT3 mutations. Current trials are combining FLT3 inhibitors with p53-activating conventional chemotherapy. The mechanisms of cytotoxicity of FLT3 inhibitors are poorly understood. We investigated the interaction of FLT3 and p53 pathways after their simultaneous blockade using the selective FLT3 inhibitor FI-700 and the MDM2 inhibitor Nutlin-3 in AML. Results: FI-700 induced G1-phase cell cycle arrest and apoptosis as evidenced by increased sub-G1 DNA content and phosphatidylserine externalization in FLT3/ITD MOLM-13 (FLT3-ITD, wild-type (wt)-p53) and MV4-11NR (FLT3-ITD, mutated-p53) AML cells. FI-700 did not affect cell cycle distribution patterns nor did it induce apoptosis in FLT3/WT OCI-AML-3 (FLT3/WT, wt-p53) and HL-60 (FLT3/WT, del (del)-p53). Wt-p53 MOLM-13 and OCI-AML-3 cells were susceptible to Nutlin-induced apoptosis. FI-700 augmented Nutlin-induced Bax activation, mitochondrial membrane potential (MMP) loss, caspase-3 activation and phosphatidylserine externalization in MOLM-13 cells. FI-700 rapidly reduced Mcl-1 levels in FLT3/ITD cells, mainly by enhancing proteasomal Mcl-1 degradation. Levels of other Bcl-2 family proteins examined did not change significantly. Mcl-1 levels were only modestly reduced upon Nutlin treatment. The FI-700/Nutlin-3 combination profoundly reduced Mcl-1 levels. Immunoprecipitation/ immunoblotting results suggested that the drug combination results in a profound decrease in Mcl-1-bound Bim. FI-700 enhanced doxorubicin-induced apoptosis in FLT3/ITD MOLM-13 and MV4-11NR cells, suggesting that FI-700 can enhance both the p53-dependent and the p53-independent apoptotic effects of doxorubicin. Finally, cooperative apoptotic effects of FI-700/Nutlin-3 were seen in primary AML cells with FLT3/ITD. Conclusion: FLT3 inhibition by FI-700 immediately reduces anti-apoptotic Mcl-1 levels and enhances Nutlin-induced p53-mediated mitochondrial apoptosis in FLT3/ITD-expressing AML cells via the Mcl-1/Noxa axis. FLT3 inhibition, in combination with p53-inducing agents, might represent a potential therapeutic approach in AML with FLT3/ITD. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3811-3811 ◽  
Author(s):  
Amanda J Favreau ◽  
Fariba Shaffiey ◽  
Erin Cross ◽  
Pradeep Sathyanarayana

Abstract The recent discovery of new molecular lesions with prognostic significance in acute myeloid leukemia (AML) is enhancing our understanding of leukemia biology and our ability to identify new therapeutic targets. Previously, using the unique leukemic myeloid progenitor line AML-193, we profiled IL-3-, GM-CSF-, and G-CSF-regulated miRNA signatures. 301 miRNAs were commonly regulated by these three cytokines, and the most highly induced miRNA was miR-590-5p. Herein, we have attempted to define the functional role and clinical relevance of miR-590 in AML. We first examined the relative miR-590 expression in steady state hematopoiesis and showed it was highest at CD34+ and declined its expression through myeloid lineage differentiation (ANOVA, p<0.0001). To functionally determine the role of increased miR-590 expression, we generated a gain-of-function model in human CD34+ hematopoietic stem cells (HSC) via lentivirus transduction. Increased expression of miR-590 in CD34+ cells resulted in significant increases in CFU-GM colonies, strongly suggesting that dysregulation of miR-590 expression may be myeloproliferative. In AML (n=33) and control (n=9) bone marrow samples, miR-590 expression was determined via RT-qPCR. miR-590-5p expression was highly upregulated in 22 of the samples (67%) compared to control subjects. In silico analysis of the miR-590-5p promoter revealed three potential binding sites for STAT5 (-249, -749, -1499). To functionally determine whether STAT5 directly regulates miR-590-5p expression, we performed a ChIP assay, which showed that STAT5 binds to the -749 region of miR-590-5p promoter. To conclusively determine the STAT5 binding sites, we cloned the miR-590 promoter in a luciferase vector and performed site directed mutagenesis for each potential binding site. This assay confirmed that the -749 binding site was the major STAT5 regulatory site for miR-590 (p<0.002). Importantly, constitutive activation of STAT5 is a hallmark of AML associated with FLT3 mutations, therefore, we set out to determine if specific STAT5 and FLT3 inhibitors could decrease miR-590 expression. We pretreated MV4-11 cells, which harbors the FLT-ITD mutation and has increased STAT5 activation, with 100uM STAT5 inhibitor (N′-((4-Oxo-4H-chromen-3-yl)methylene)nicotinohydrazide) for 90 minutes or 100nM FLT3 inhibitor (EMD Millipore, 343020) for 12 hours, both of which resulted in significant inhibition of miR-590-5p expression (p<0.05). To evaluate whether the AML samples with high miR-590 expression also possess elevated phospho-STAT5 or phospho-FLT3 levels, we performed immunohistochemistry analysis on a custom-made tissue microarray. In AML samples with high miR-590 levels, increased activation of FLT3 and STAT5 was observed compared to controls. Since FLT3 mutations result in decreased survival and poorer prognosis in AML, it may be that miR-590-5p plays an important role in the pathology of AML associated with dysregulated FLT3 and STAT5. To understand the complete functional role of miR-590 in AML, the predicted targets need to be identified and validated for their roles in leukemogenesis. Upon molecular screening of several predicted targets, FasL was experimentally found to be a conserved target of miR-590. More specifically, 3’UTR analysis of FasL revealed three potential seed sequences for miR-590 which have been verified experimentally via luciferase assay. Furthermore, significantly increased levels of FasL protein and transcript expression was detected in the MV4-11 cells stably expressing anti-miR-590 compared to control cells. Additionally, we identified the levels of Fas/CD95 (FasL receptor) on AML-193 and MV4-11 cell lines and found these cells had high Fas/CD95 expression on the cell surface as analyzed via flow cytometry. In order to determine the physiological significance of Fas/FasL, these cells were treated with soluble FasL (100ng) for 24 hours and apoptosis was analyzed via Annexin V staining. FasL treatment induced increased apoptosis compared to the untreated cells. Taken together, we have identified miR-590 as a candidate oncomiR that is regulated via the STAT5 pathway and targets FasL to promote cell survival. Thus, our data suggests that further understanding of miR-590’s role in AML may lead to development of novel anti-miR-590 therapeutic strategies in AML associated with dysregulated STAT5. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document