scholarly journals A brief, but comprehensive, guide to clonal evolution in aplastic anemia

Hematology ◽  
2018 ◽  
Vol 2018 (1) ◽  
pp. 457-466 ◽  
Author(s):  
Daria V. Babushok

Abstract Acquired aplastic anemia (AA) is an immune-mediated bone marrow aplasia that is strongly associated with clonal hematopoiesis upon marrow recovery. More than 70% of AA patients develop somatic mutations in their hematopoietic cells. In contrast to other conditions linked to clonal hematopoiesis, such as myelodysplastic syndrome (MDS) or clonal hematopoiesis of indeterminate potential in the elderly, the top alterations in AA are closely related to its immune pathogenesis. Nearly 40% of AA patients carry somatic mutations in the PIGA gene manifested as clonal populations of cells with the paroxysmal nocturnal hemoglobinuria phenotype, and 17% of AA patients have loss of HLA class I alleles. It is estimated that between 20% and 35% of AA patients have somatic mutations associated with hematologic malignancies, most characteristically in the ASXL1, BCOR, and BCORL1 genes. Risk factors for evolution to MDS in AA include the duration of disease, acquisition of high-risk somatic mutations, and age at AA onset. Emerging data suggest that several HLA class I alleles not only predispose to the development of AA but may also predispose to clonal evolution in AA patients. Long-term prospective studies are needed to determine the true prognostic implications of clonal hematopoiesis in AA. This article provides a brief, but comprehensive, review of our current understanding of clonal evolution in AA and concludes with 3 cases that illustrate a practical approach for integrating results of next-generation molecular studies into the clinical care of AA patients in 2018.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3738-3738
Author(s):  
Yoshitaka Zaimoku ◽  
Sharon D. Adams ◽  
Bhavisha A Patel ◽  
Audrey Ai Chin Lee ◽  
Sachiko Kajigaya ◽  
...  

Clonal hematopoiesis associated with loss of HLA class I alleles due to somatic mutations and/or 6p loss of heterozygosity (LOH) is frequent in immune aplastic anemia (AA). HLA-B*40:02 is more likely to be involved in HLA loss in Japanese AA patients, suggesting a role for this allele in immune pathophysiology (Zaimoku Y et al, Blood 2017). Mutations in non-B*40:02 HLA class I alleles have been reported in a limited number of patients from the United States (Babushok D et al, Blood Adv 2017) and Japan (Mizumaki H et al, 60th ASH meeting), but their prevalence and clinical significance are not well characterized. We investigated somatic mutations of HLA class I alleles, HLA allele frequencies, and their correlations with outcomes of therapy in a total of 532 AA patients, aged 2 years or older, treated on various Hematology Branch protocols (clinicaltrials.gov NCTs 00001964, 00061360, 00195624, 00260689, 00944749, 01193283, and 01623167). HLA allele-lacking (HLA-) monocytes from cryopreserved peripheral blood mononuclear cells were screened by flow cytometry after staining with allele-specific monoclonal antibodies for HLA-A and/or HLA-B (HLA-flow) in 172 AA patients. HLA- monocytes accounting for 0.5% to 100% (median 9.5%) of total monocytes were detected in 49 (28%) of the 172 patients and in 59 (15%) of 382 alleles analyzed (Figure 1). Loss of cell surface expression was frequent for HLA-B14 (46%), B27 (33%), B49 (33%), A68 (26%), A2 (23%), B40 (21%), and B8 (21%). One percent to 60% (median, 8.9%) of glycosylphosphatidylinositol-linked protein-negative (GPI-) monocytes were also present in 43% (21 of 49) of the patients with HLA- monocytes, but GPI- clones had normal HLA cell surface expression. Deep sequencing of HLA-A, HLA-B and HLA-C on sorted HLA- and HLA+GPI+ monocytes was performed in 42 of the 48 patients from whom adequate cells were available. Somatic mutations and/or LOH corresponding to the lacking alleles were detected in all 42 cases (Figure 1): 9 had both somatic mutations and LOH, 20 had somatic mutations only, and 13 had LOH only. Among the 13 patients who showed only LOH in the absent allele, 6 had somatic mutations in other alleles of HLA+ monocytes that was not analyzable of HLA expression, and 2 had a breakpoint of LOH between HLA-A and HLA-C, leading to loss of a single HLA-A allele. Somatic mutations or LOH involving only one allele were present in 37 patients among 6 HLA-A alleles (in 02:01 [7 patients], 02:05 [1], 02:06 [3], 02:11 [1], 68:01 [2], 68:02 [2]) and 10 HLA-B alleles (07:02 [1], 08:01 [4], 14:01 [1], 14:02 [7], 27:05 [1], 35:02 [1], 35:05 [1], 40:01 [1], 40:02 [3], 45:01 [1]), but were not found in HLA-C alleles. HLA allele frequencies in AA patients, including 271 white Americans, 120 African-Americans, and 99 Hispanics and Latinos, were compared with ethnicity-matched individuals in bone marrow donor datasets of the National Marrow Donor Program, and underwent random-effects meta-analyses. HLA-B*07, B*14, and B*40 were overrepresented in AA, while A*02, A*68, and B*08 frequencies were similar to those of healthy donors (Figure 2). In 164 severe AA patients who were initially treated with horse antithymocyte globulin (hATG), cyclosporine, and eltrombopag between 2012 and 2018, 36 and 79 were positive and negative for HLA- monocytes, respectively, and 49 were not tested by HLA-flow. There was no significant difference in overall and complete response rates at six months among the three groups (Figure 3). Clonal evolution, defined as acquisition of abnormal bone marrow cytogenetics or morphology, especially high-risk evolution to chromosome 7 abnormalities, complex cytogenetics, or morphological MDS/AML, tended to be more frequent in patients with HLA- monocytes, compared to the other two groups, but the difference did not reach statistical significance. Clinical outcomes were also assessed according to the presence of specific HLA alleles in 400 severe AA patients who were treated with hATG-based initial immunosuppressive therapy from 2000 to 2018: there was no significant differences in probabilities of response and clonal evolution according to the alleles associated with somatic mutations. Our study revealed that somatic mutations in HLA genes in AA are broadly distributed, but some alleles are preferentially affected. Inconsistent with previous studies, we found that outcomes of therapy did not significantly correlate with HLA gene mutations or with distinct HLA alleles. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3894-3894
Author(s):  
Tatsuya Imi ◽  
Takamasa Katagiri ◽  
Kazuyoshi Hosomichi ◽  
Noriharu Nakagawa ◽  
Yoshitaka Zaimoku ◽  
...  

Abstract [Background] Clonal hematopoiesis is currently known to be common in patients with acquired aplastic anemia (AA). One of the most common abnormalities underlying clonal hematopoiesis in AA patients is copy-number neutral loss of heterozygosity (LOH) in the short of 6 chromosome (6pLOH) caused by acquired uniparental disomy. Hematopoietic stem/progenitor cells (HSPCs) having undergone 6pLOH are thought to evade attack by cytotoxic T lymphocytes (CTLs) specific to auto-antigens by lacking particular HLA-A alleles. These HSPCs then produce HLA class I allele-lacking [HLA(-)] leukocytes to support hematopoiesis in patients with AA patients in remission. Our recent study showed that HLA(-) granulocytes are detected in about 24% of newly-diagnosed AA patients, and the aberrant granulocytes often account for more than 95% of the total granulocytes and persist for many years. The sustainability of 6pLOH(+) HSPC clones suggests that these HSPCs may suffer from secondary somatic mutations that confer a proliferative advantage on them over normal HSPCs. Alternatively, 6pLOH(+) HSPCs may persist and continue to support hematopoiesis according to their inherent sustainability, just like the PIGA mutant HSPCs we previously described (Katagiri et al. Stem Cells, 2013). To test these hypotheses, we determined the sequences of genes associated with the clonal expansion of HSPCs in HLA(-) granulocytes. [Patients and Methods] Eleven AA patients whose percentages of HLA(-) granulocytes ranged 6.4%-99.8% (median 94.2%) of the total granulocyte population were chosen for this study. The patients (male/female, 5/6 and age 27-79 [median 53] years) had been diagnosed with severe (n=5) or non-severe (n=6) AA 2-25 [median 12.5] years earlier, and 7 and 4 patients achieved complete response and partial response, respectively after treatments with cyclosporine (CsA) alone (n=4), CsA+antithymocyte globulin (ATG, n=3), CsA+anabolic steroids (AS, n=2), AS+romiplostim (n=1), and AS alone (n=1). The lineage combinations of HLA(-) cells were granulocyte, monocytes, B cells and T cells (GMBT) in 6, GMB in 4 and GM in 1. HLA(-) and normal [HLA(+)] granulocytes were sorted from the blood leukocytes of the 11 patients and the DNA of each cell population as well as that of buccal mucosa cells was subjected to target sequencing of 61 myelodysplastic syndrome (MDS)-related genes with MiSeq. DNA samples from 5 patients including 4 patients whose HLA(-) cell percentages were greater than 95% were further analyzed by whole-exome sequencing (WES) using HiSeq. The percentage of 6pLOH(+) cells in the total granulocytes or sorted HLA(-) granulocytes were estimated using digital droplet PCR or deep sequencing of HLA alleles. [Results] Target sequencing of 8 of the 11 patients revealed somatic mutations in the HLA(-) granulocytes of 3 patients. HLA(-) granulocytes-specific mutations were found in DNMT3A, PRR5L, SMC3A, and LRCH1 (Table). The variant allele frequencies (VAF) of these mutations were far lower (5.1%-20%) than those of HLA(-) granulocytes that accounted for 95% of sorted cells. WES revealed 22 non-synonymous and 9 synonymous mutations in the HLA(-) granulocytes from 4 of the 5 patientsthat included 3 new patients and 2 patients whose samples were negative for mutations revealed by the target sequencing. The VAF of these mutations ranged from 20.7-52.5% (median 44.1%, Table). Very-high VAFs of several mutant genes suggested that these mutations occurred simultaneously with or soon after the occurrence of 6pLOH. A patient who achieved remission after romiplostim therapy without ATG showed various gene mutations that were thought to have occurred after 6pLOH. Despite of their highly biased hematopoiesis supported by single or few clones, recurrent or MDS-related oncogenic mutations were not detected in any of the 11 patients. Of note, the percentages of 6pLOH(+) cells in the sorted HLA(-) granulocytes were ≤75% (36.7%, 46%, 74%, and 75%) in 4 patients, indicating the presence of granulocytes lacking HLA-A alleles through mechanisms other than 6pLOH. [Conclusions] HLA(-) HSPCs caused by 6pLOH or other unknown mechanisms support long-term hematopoiesis without the development of oncogenic driver mutations that are associated with clonal hematopoiesis of MDS; as such, clonal hematopoiesis by 6pLOH(+) HSPCs may not portend a poor prognosis. Disclosures Nakao: Alexion Pharmaceuticals: Honoraria, Research Funding.


Blood ◽  
2016 ◽  
Vol 128 (3) ◽  
pp. 337-347 ◽  
Author(s):  
Seishi Ogawa

AbstractClonal hematopoiesis (CH) in aplastic anemia (AA) has been closely linked to the evolution of late clonal disorders, including paroxysmal nocturnal hemoglobinuria and myelodysplastic syndromes (MDS)/acute myeloid leukemia (AML), which are common complications after successful immunosuppressive therapy (IST). With the advent of high-throughput sequencing of recent years, the molecular aspect of CH in AA has been clarified by comprehensive detection of somatic mutations that drive clonal evolution. Genetic abnormalities are found in ∼50% of patients with AA and, except for PIGA mutations and copy-neutral loss-of-heterozygosity, or uniparental disomy (UPD) in 6p (6pUPD), are most frequently represented by mutations involving genes commonly mutated in myeloid malignancies, including DNMT3A, ASXL1, and BCOR/BCORL1. Mutations exhibit distinct chronological profiles and clinical impacts. BCOR/BCORL1 and PIGA mutations tend to disappear or show stable clone size and predict a better response to IST and a significantly better clinical outcome compared with mutations in DNMT3A, ASXL1, and other genes, which are likely to increase their clone size, are associated with a faster progression to MDS/AML, and predict an unfavorable survival. High frequency of 6pUPD and overrepresentation of PIGA and BCOR/BCORL1 mutations are unique to AA, suggesting the role of autoimmunity in clonal selection. By contrast, DNMT3A and ASXL1 mutations, also commonly seen in CH in the general population, indicate a close link to CH in the aged bone marrow, in terms of the mechanism for selection. Detection and close monitoring of somatic mutations/evolution may help with prediction and diagnosis of clonal evolution of MDS/AML and better management of patients with AA.


Blood ◽  
2017 ◽  
Vol 129 (21) ◽  
pp. 2908-2916 ◽  
Author(s):  
Yoshitaka Zaimoku ◽  
Hiroyuki Takamatsu ◽  
Kazuyoshi Hosomichi ◽  
Tatsuhiko Ozawa ◽  
Noriharu Nakagawa ◽  
...  

Key Points Somatic mutations of HLA-B*40:02 are very frequently detected in granulocyte of patients with acquired aplastic anemia. Antigen presentation via HLA-B4002 may play a critical role in the pathophysiology of acquired aplastic anemia.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5024-5024
Author(s):  
Hailong He ◽  
Hua Yin ◽  
Xiaoqing Liu ◽  
Lang Cheng ◽  
Guangsheng He ◽  
...  

ABSTRACT Objectives and Methods: It was postulated that the subset of aplastic anemia ( AA ) with somatic mutations typically seen in myeloid malignancies were at risk of clonal evolution[1,2]. But the response rate to immunosuppressive therapy (IST) was different or not between patients with or without mutations, remain unclear[1,2]. Age of patients with AA is a strong predictor of outcome for IST, and the presence of somatic mutations also rise appreciably in frequency with age[3]. Here we checked myeloid tumor-related somatic mutations from 293 children and adult patients who have acquired AA. We excluded Fanconi anemia, mutations of telomere maintenance, and a family history of BM failure (BMF) or cancer. We looked for somatic mutations by identifying previously characterized single-nucleotide variants in 25 genes that are recurrently mutated in myeloid malignancies in the peripheral blood cells by second-generation gene sequencing. And clinical significance of mutations in different ages was also annalyzed. Results : Somatic mutations in myeloid tumor-related genes are present in 6.48% of the patients. The the variants occurred in ten genes: ASXL1 (n = 2 ), KRAS (n = 1), PIGA (n = 2 ), TP53 (n = 2 ), BCOR (n = 2 ), TET2 (n = 5 ), SF3B1 (n = 1), DNMT3A (n = 2 ), SH2B3 (n = 1), MPL (n = 1) (Figure 1). The majority of the variants occurred in epigenetic genes: TET2, DNMT3A, ASXL1. Among patients of children and teen agers' group, adult group, the clonal mutations were observed in 2.82%, 9.93% (P= 0.013) (Figure 2). The presence of a somatic mutation was not associated with gender ( male or female, 3.87% vs 9.42%, P=0.054), severity ( non severe AA or severe AA, 7.87% vs 4.35%, P=0.233). Patients with somatic mutations had a simillar response rate, compared with patients without mutations in children and teen agers' group, or adult group. Somatic mutations in AA patients were not associated with high risk of transformation to MDS (P > 0.5 ). Conclusions: Age-related clonal hematopoiesis rise along age in patients with AA in chinese, but somatic mutations in AA patients were associated with efectiveness of IST, and risk of clonal evolution. References 1 Kulasekararaj AG, Jiang J, Smith AE, et al. Somatic mutations identify a subgroup of aplastic anemia patients who progress to myelodysplastic syndrome. Blood. 2014; 124(17):2698-2704). 2 Yoshizato T, Dumitriu B, Hosokawa K et al. Somatic Mutations and Clonal Hematopoiesis in Aplastic Anemia. N Engl J Med. 2015 Jul 2; 373(1):35-47. 3 Jaiswal S, Fontanillas P, Flannick J, et al. Age-Related Clonal Hematopoiesis Associated with Adverse Outcomes. N Engl J Med 2014; 371:2488-98 Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2021 ◽  
Author(s):  
Kohei Hosokawa ◽  
Hiroki Mizumaki ◽  
Takeshi Yoroidaka ◽  
Hiroyuki Maruyama ◽  
Tatsuya Imi ◽  
...  

Blood ◽  
2021 ◽  
Author(s):  
Yoshitaka Zaimoku ◽  
Bhavisha A Patel ◽  
Sharon D Adams ◽  
Ruba N Shalhoub ◽  
Emma M Groarke ◽  
...  

Immune aplastic anemia (AA) features somatic loss of HLA class I allele expression on bone marrow cells, consistent with a mechanism of escape from T cell-mediated destruction of hematopoietic stem and progenitor cells. The clinical significance of HLA abnormalities has not been well characterized. We examined somatic loss of HLA class I alleles, and correlated HLA loss and mutation-associated HLA genotypes with clinical presentation and outcomes after immunosuppressive therapy in 544 AA patients. HLA class I allele loss was detected in 92 (22%) of the 412 patients tested, in whom there were 393 somatic HLA gene mutations and 40 instances of loss of heterozygosity. Most frequently affected was HLA-B*14:02, followed by HLA-A*02:01, HLA-B*40:02, HLA-B*08:01, and HLA-B*07:02. HLA-B*14:02, HLA-B*40:02, and HLA-B*07:02 were also overrepresented in AA. High-risk clonal evolution was correlated with HLA loss, HLA-B*14:02 genotype, and older age, which yielded a valid prediction model. In two patients, we traced monosomy 7 clonal evolution from preexisting clones harboring somatic mutations in HLA-A*02:01 and HLA-B*40:02. Loss of HLA-B*40:02 correlated with higher blood counts. HLA-B*07:02 and HLA-B*40:01 genotypes and their loss correlated with late onset of AA. Our results suggest the presence of specific immune mechanisms of molecular pathogenesis with clinical implications. HLA genotyping and screening for HLA loss may be of value in the management of immune AA. This study was registered at clinicaltrials.gov as NCT00001964, NCT00061360, NCT00195624, NCT00260689, NCT00944749, NCT01193283, and NCT01623167.


2017 ◽  
Vol 1 (22) ◽  
pp. 1900-1910 ◽  
Author(s):  
Daria V. Babushok ◽  
Jamie L. Duke ◽  
Hongbo M. Xie ◽  
Natasha Stanley ◽  
Jamie Atienza ◽  
...  

Key Points Somatic HLA class I gene mutations are frequent in aAA and define HLA class I restricted autoimmunity in aAA. HLA alleles targeted by inactivating mutations are overrepresented in aAA and correlate with poor therapy response and clonal evolution.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 2-2
Author(s):  
Benjamin F Frost ◽  
Jamie Duke ◽  
Hongbo Xie ◽  
Deborah Ferriola ◽  
Joseph H Oved ◽  
...  

Acquired aplastic anemia (AA) is an autoimmune bone marrow aplasia caused by T cell-mediated destruction of hematopoietic stem and progenitor cells. The antigenic target in AA remains unknown. Recently, we and others identified frequent somatic loss of function of several human leukocyte antigen (HLA) class I alleles in hematopoietic cells that survive the AA immune attack, suggesting these alleles ("risk alleles") present autoantigen in the affected patients. We hypothesize that risk alleles share structural features and peptide-binding characteristics that may inform our understanding of the immune mechanism of AA. To identify additional AA HLA class I risk alleles, we have partnered with two multi-institutional consortia, the North American Pediatric Aplastic Anemia Consortium (NAPAAC) and the Center for International Blood and Marrow Transplant Research (CIBMTR), to evaluate 507 AA patients for somatic HLA loss. Using a combination of targeted massively parallel sequencing of HLA class I genes and single nucleotide polymorphism array genotyping, we identified HLA loss in 19% of the NAPAAC cohort (30 of 156 unselected AA patients) and 13% of the CIBMTR cohort (46 of 351 patients selected to maximize discovery of less common risk alleles). Copy number-neutral loss of heterozygosity of chromosome arm 6p (6p CN-LOH) was the most common cause of HLA loss, occurring in 50 patients (10% of total cohort, 12% NAAPAC and 9% CIBMTR). Somatic mutations were present in 45 patients (9% of total cohort, 12% of NAPAAC and 7% CIBMTR). Patients with HLA loss had a median of 1 mutant clone per patient (range 1-7). Of the somatic mutations, 80% were predicted to disrupt expression of the affected allele (through loss of start, nonsense, or frameshift mutations). The other 20% were missense mutations affecting residues in the peptide binding groove (6 mutations) and the α3 domain (9 mutations) of the HLA class I protein. A total of 19 distinct AA HLA risk alleles were identified, of which 13 were newly identified in this study. Several risk alleles (HLA-B*14:02, HLA-B*40:02, HLA-A*02:01) were enriched in AA patients compared to ethnicity matched controls. Among the 507 patients in the study, at least one risk allele was present in 436/493 (88%) of AA patients and in 34/39 (87%) of the 6p CN-LOH events. Mutations clustered in several groups of alleles (supertypes) known to bind overlapping peptide repertoires, with alleles in B27 and B44 supertypes being most commonly affected. There were no mutations in A01, A01A03, A01A24, A24, B58, B62, or in any of the HLA-C alleles analyzed. Using several metrics to estimate the strength of the autoimmune selection on a given allele, including the frequency of somatic loss and similarity to other HLA risk alleles, we developed an AA HLA risk allele pathogenicity index ranging from very high (B*14:02 and B*40:02) and high pathogenicity (A*33:03, B*08:01, B*13:02, B*14:01, B*27:03, B*27:05, B*38:02, B*41:02 and B*49:01) to those unlikely to be pathogenic. Interestingly, even within high risk supertypes such as B44, there was a wide variation in predicted pathogenicity, ranging from high (for B*40:02 and B*41:02) to low pathogenicity (for B*44:02 and B*44:03), suggesting differences in autopeptide binding. Our study provides a comprehensive analysis of AA HLA risk alleles in a large diverse cohort of AA patients. Our results suggest that HLA risk alleles have shared autoantigen binding specificities that define their pathogenicity in AA, which can be used to identify candidate AA autoantigens. HLA risk allele pathogenicity may have future clinical utility as an adjunctive diagnostic test, as well as for prognostic assessment and haploidentical donor selection. Disclosures Lee: AstraZeneca: Research Funding; Kadmon: Research Funding; Takeda: Research Funding; Novartis: Research Funding; Amgen: Research Funding; Syndax: Research Funding; Pfizer: Consultancy, Research Funding; Incyte: Consultancy, Research Funding. Monos:Omixon: Current equity holder in private company, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 730-730 ◽  
Author(s):  
Daria V. Babushok ◽  
Jamie Duke ◽  
Hongbo M. Xie ◽  
Deborah Ferriola ◽  
Natasha Stanley ◽  
...  

Abstract Acquired aplastic anemia (AA) is a rare bone marrow failure syndrome. AA is believed to be immune-mediated, supported by in vitro studies and the success of empiric immunosuppressive therapy. Recently, a chromosomal alteration-copy number-neutral loss of heterozygosity of chromosome arm 6p, the site of the Major Histocompatibility Complex and the Human Leukocyte Antigen (HLA) genes-has been identified as a recurrent somatic change in AA. Clonal hematopoiesis marked by 6p CN-LOH is hypothesized to emerge by immune escape of hematopoietic cells lacking certain HLA alleles. However, because of the large size of the genomic region involved by 6p CN-LOH and the strong linkage disequilibrium among other genes in the region, specific alleles targeted by the immune selection in AA are unknown. In a previous study, we reported two patients with somatic loss-of-function mutations in HLA class I genes, leading us to hypothesize that loss of HLA alleles in AA may be common and likely defines a subset of patients with unique characteristics and disease course. To characterize the prevalence of HLA allele loss in AA, we performed targeted next generation sequencing of HLA-A, B, and C genes, in conjunction with single nucleotide polymorphism array genotyping of bone marrow (BM) or peripheral blood DNA in 74 patients with AA. 52 patients had pediatric-onset AA, and 22 had adult-onset AA. Somatic status of mutations was confirmed by sequencing paired constitutional DNA. Eleven patients (15%) were found to have somatic loss of HLA alleles: 5 patients had 6p CN-LOH, 3 patients had loss-of-function mutations (frameshift, nonsense, or start codon loss) of the HLA class I alleles, and 3 patients were found to have both 6p CN-LOH as well as loss-of-function HLA mutations. HLA loss was more frequent in pediatric-onset AA (9 of 52 patients, 17%) as compared to adults (2 of 22 patients, 9%), although the difference did not reach statistical significance. No HLA mutations were identified in 19 patients with classical Paroxysmal Nocturnal Hemoglobinuria, nor in 20 healthy relatives (p=0.06). Among the 11 patients with somatic HLA loss, 8 patients had evidence of oligoclonal hematopoiesis with several independent clones carrying different alterations of the same HLA allele. Among the 6 patients with loss-of-of function HLA mutations, the median number of HLA mutations per patient was 1.5 (range 1-3). Of the 8 patients with acquired 6p CN-LOH, the median number of distinct 6p CN-LOH events per patient was 2 (range 1-4). In the 3 patients harboring both 6p CN-LOH as well as the loss-of-function HLA mutations, both mechanisms led to the recurrent loss of the same allele. Strikingly, only a few distinct HLA class I alleles were targeted by mutations. The most frequently affected were HLA-B*40:02:01 (5 independent mutations in 2 patients) and HLA-B*14:02:01 (3 mutations in 2 patients, and as well as loss through polyclonal 6p CN-LOH in 2 patients). Additionally, one patient each had loss of HLA-A*68:01:01 and HLA-A*33:03:01 through mutational inactivation as well as through 6p CN-LOH. To investigate whether HLA mutations are sufficient to cause clonal expansion or whether other somatic mutations are required, we performed comparative whole exome sequencing (WES) of paired BM and skin DNA in five patients carrying inactivating HLA mutations. Four of the five patients had no other mutations affecting protein sequence or untranslated regulatory regions. One patient had additional somatic mutations, which were subclonal to and co-segregated with the three independent inactivating mutations in the HLA-B*40:02:01 allele. Serial follow-up confirmed that HLA mutations persisted overtime, with a relative expansion of one of the HLA-B*40:02:01 mutant clones bearing a protein-altering mutation in the BCL9 gene. Our results show that loss of HLA class I alleles is common in AA, second only to PIGA gene mutations. The affected alleles are non-random, with immune selection most commonly targeting HLA-B* 40:02:01 and HLA-B*14:02:01 alleles, providing the first evidence of specificity of immune attack in AA. The resultant hematopoiesis caused by selection of cells with HLA allele loss is typically oligoclonal and commonly occurs in the absence of other somatic mutations. Acquisition of additional mutations can lead to clonal dominance overtime. Further studies are underway to better understand the role of HLA loss in patient outcomes and AA pathogenesis. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document