IκB kinase 2 but not NF-κB–inducing kinase is essential for effective DC antigen presentation in the allogeneic mixed lymphocyte reaction

Blood ◽  
2003 ◽  
Vol 101 (3) ◽  
pp. 983-991 ◽  
Author(s):  
Evangelos Andreakos ◽  
Clive Smith ◽  
Claudia Monaco ◽  
Fionula M. Brennan ◽  
Brian M. Foxwell ◽  
...  

AbstractAlthough dendritic cells (DCs) are the most potent antigen-presenting cells involved in numerous physiologic and pathologic processes, little is known about the signaling pathways that regulate DC activation and antigen-presenting function. Recently, we demonstrated that nuclear factor (NF)-κB activation is central to that process, as overexpression of IκBα blocks the allogeneic mixed lymphocyte reaction (MLR), an in vitro model of T-cell activation. In this study, we investigated the role of 2 putative NF-κB–inducing components, NF-κB–inducing kinase (NIK), and IκB kinase 2 (IKK2). Using an adenoviral gene transfer method to efficiently express dominant-negative (dn) forms of these molecules in monocyte-derived DCs, we found that IKK2dn but not NIKdn inhibited the allogeneic MLR. When DCs were fixed, this inhibitory effect of IKK2dn was lost, suggesting that IKK2 is involved in T-cell–derived signals that enhance DC antigen presentation during the allogeneic MLR period and does not have an effect on viability or differentiation state of DCs prior to coculture with T cells. One such signal is likely to be CD40 ligand (CD40L), as IKK2dn blocked CD40L but not lipopolysaccharide (LPS)–induced NF-κB activation, cytokine production, and up-regulation of costimulatory molecules and HLA-DR in DCs. In summary, our results demonstrate that IKK2 is essential for DC activation induced by CD40L or contact with allogeneic T cells, but not by LPS, whereas NIK is not required for any of these signals. In addition, our results support IKK2 as a potential therapeutic target for the down-regulation of unwanted immune responses that may occur during transplantation or autoimmunity.

2020 ◽  
Vol 11 ◽  
Author(s):  
Christian Binder ◽  
Felix Sellberg ◽  
Filip Cvetkovski ◽  
Erik Berglund ◽  
David Berglund

Antibodies are commonly used in organ transplant induction therapy and to treat autoimmune disorders. The effects of some biologics on the human immune system remain incompletely characterized and a deeper understanding of their mechanisms of action may provide useful insights for their clinical application. The goal of this study was to contrast the mechanistic properties of siplizumab with Alemtuzumab and rabbit Anti-Thymocyte Globulin (rATG). Mechanistic assay systems investigating antibody-dependent cell-mediated cytotoxicity, antibody-dependent cell phagocytosis and complement-dependent cytotoxicity were used to characterize siplizumab. Further, functional effects of siplizumab, Alemtuzumab, and rATG were investigated in allogeneic mixed lymphocyte reaction. Changes in T cell activation, T cell proliferation and frequency of naïve T cells, memory T cells and regulatory T cells induced by siplizumab, Alemtuzumab and rATG in allogeneic mixed lymphocyte reaction were assessed via flow cytometry. Siplizumab depleted T cells, decreased T cell activation, inhibited T cell proliferation and enriched naïve and bona fide regulatory T cells. Neither Alemtuzumab nor rATG induced the same combination of functional effects. The results presented in this study should be used for further in vitro and in vivo investigations that guide the clinical use of immune modulatory biologics.


1998 ◽  
Vol 187 (10) ◽  
pp. 1611-1621 ◽  
Author(s):  
Sarah E. Townsend ◽  
Christopher C. Goodnow

Antigen-specific B cells are implicated as antigen-presenting cells in memory and tolerance responses because they capture antigens efficiently and localize to T cell zones after antigen capture. It has not been possible, however, to visualize the effect of specific B cells on specific CD4+ helper T cells under physiological conditions. We demonstrate here that rare T cells are activated in vivo by minute quantities of antigen captured by antigen-specific B cells. Antigen-activated B cells are helped under these conditions, whereas antigen-tolerant B cells are killed. The T cells proliferate and then disappear regardless of whether the B cells are activated or tolerant. We show genetically that T cell activation, proliferation, and disappearance can be mediated either by transfer of antigen from antigen-specific B cells to endogenous antigen-presenting cells or by direct B–T cell interactions. These results identify a novel antigen presentation route, and demonstrate that B cell presentation of antigen has profound effects on T cell fate that could not be predicted from in vitro studies.


2006 ◽  
Vol 203 (2) ◽  
pp. 437-447 ◽  
Author(s):  
Ingo Klein ◽  
Ian Nicholas Crispe

The transplanted liver elicits systemic tolerance, and the underlying mechanism may also account for the persistence of liver infections, such as malaria and viral hepatitis. These phenomena have led to the hypothesis that antigen presentation within the liver is abortive, leading to T cell tolerance or apoptosis. Here we test this hypothesis in an optimized orthotopic liver transplantation model. In direct contradiction to this model, the liver itself induces full CD8+ T cell activation and differentiation. The effects of microchimerism were neutralized by bone marrow transplantation in the liver donor, and the lack of liver-derived antigen-presenting cells was documented by eight-color flow cytometry and by sensitive functional assays. We conclude that local antigen presentation cannot explain liver tolerance. On the contrary, the liver may be an excellent priming site for naive CD8+ T cells.


F1000Research ◽  
2014 ◽  
Vol 3 ◽  
pp. 37 ◽  
Author(s):  
Klaus Ley

The second touch hypothesis states that T cell activation, proliferation, induction of homing receptors and polarization are distinguishable and, at least in part, sequential. The second touch hypothesis maintains that full T cell polarization requires T cell interaction with antigen-presenting cells (DCs, macrophages, B cells and certain activated stromal cells) in the non-lymphoid tissue where the antigen resides. Upon initial antigen encounter in peripheral lymph nodes (PLN), T cells become activated, proliferate and express homing receptors that enable them to recirculate to the (inflamed) tissue that contains the antigen. Differentiation into the T helper lineages Th1, Th2, Th17 and induced regulatory T cells (iTreg) requires additional antigen presentation by tissue macrophages and other antigen presenting cells (APCs) in the inflamed tissue. Here, I present a conceptual framework for the importance of peripheral (non-lymphoid) antigen presentation to antigen-experienced T cells.


2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Jinar Rostami ◽  
Grammatiki Fotaki ◽  
Julien Sirois ◽  
Ropafadzo Mzezewa ◽  
Joakim Bergström ◽  
...  

Abstract Background Many lines of evidence suggest that accumulation of aggregated alpha-synuclein (αSYN) in the Parkinson’s disease (PD) brain causes infiltration of T cells. However, in which ways the stationary brain cells interact with the T cells remain elusive. Here, we identify astrocytes as potential antigen-presenting cells capable of activating T cells in the PD brain. Astrocytes are a major component of the nervous system, and accumulating data indicate that astrocytes can play a central role during PD progression. Methods To investigate the role of astrocytes in antigen presentation and T-cell activation in the PD brain, we analyzed post mortem brain tissue from PD patients and controls. Moreover, we studied the capacity of cultured human astrocytes and adult human microglia to act as professional antigen-presenting cells following exposure to preformed αSYN fibrils. Results Our analysis of post mortem brain tissue demonstrated that PD patients express high levels of MHC-II, which correlated with the load of pathological, phosphorylated αSYN. Interestingly, a very high proportion of the MHC-II co-localized with astrocytic markers. Importantly, we found both perivascular and infiltrated CD4+ T cells to be surrounded by MHC-II expressing astrocytes, confirming an astrocyte T cell cross-talk in the PD brain. Moreover, we showed that αSYN accumulation in cultured human astrocytes triggered surface expression of co-stimulatory molecules critical for T-cell activation, while cultured human microglia displayed very poor antigen presentation capacity. Notably, intercellular transfer of αSYN/MHC-II deposits occurred between astrocytes via tunneling nanotubes, indicating spreading of inflammation in addition to toxic protein aggregates. Conclusions In conclusion, our data from histology and cell culture studies suggest an important role for astrocytes in antigen presentation and T-cell activation in the PD brain, highlighting astrocytes as a promising therapeutic target in the context of chronic inflammation.


F1000Research ◽  
2014 ◽  
Vol 3 ◽  
pp. 37 ◽  
Author(s):  
Klaus Ley

The second touch hypothesis states that T cell activation, proliferation, induction of homing receptors and polarization are distinguishable and, at least in part, sequential. The second touch hypothesis maintains that full T cell polarization requires T cell interaction with antigen-presenting cells (DCs, macrophages, B cells and certain activated stromal cells) in the non-lymphoid tissue where the antigen resides. Upon initial antigen encounter in peripheral lymph nodes (PLN), T cells become activated, proliferate and express homing receptors that enable them to recirculate to the (inflamed) tissue that contains the antigen. Differentiation into the T helper lineages Th1, Th2, Th17 and induced regulatory T cells (iTreg) requires additional antigen presentation by tissue macrophages and other antigen presenting cells (APCs) in the inflamed tissue. Here, I present a conceptual framework for the importance of peripheral (non-lymphoid) antigen presentation to antigen-experienced T cells.


1996 ◽  
Vol 184 (2) ◽  
pp. 753-758 ◽  
Author(s):  
X G Tai ◽  
Y Yashiro ◽  
R Abe ◽  
K Toyooka ◽  
C R Wood ◽  
...  

Costimulation mediated by the CD28 molecule plays an important role in optimal activation of T cells. However, CD28-deficient mice can mount effective T cell-dependent immune responses, suggesting the existence of other costimulatory systems. In a search for other costimulatory molecules on T cells, we have developed a monoclonal antibody (mAb) that can costimulate T cells in the absence of antigen-presenting cells (APC). The molecule recognized by this mAb, 9D3, was found to be expressed on almost all mature T cells and to be a protein of approximately 24 kD molecular mass. By expression cloning, this molecule was identified as CD9, 9D3 (anti-CD9) synergized with suboptimal doses of anti-CD3 mAb in inducing proliferation by virgin T cells. Costimulation was induced by independent ligation of CD3 and CD9, suggesting that colocalization of these two molecules is not required for T cell activation. The costimulation by anti-CD9 was as potent as that by anti-CD28. Moreover, anti-CD9 costimulated in a CD28-independent way because anti-CD9 equally costimulated T cells from the CD28-deficient as well as wild-type mice. Thus, these results indicate that CD9 serves as a molecule on T cells that can deliver a potent CD28-independent costimulatory signal.


Author(s):  
Njabulo Ngwenyama ◽  
Annet Kirabo ◽  
Mark Aronovitz ◽  
Francisco Velázquez ◽  
Francisco Carrillo-Salinas ◽  
...  

Background: Despite the well-established association between T cell-mediated inflammation and non-ischemic heart failure (HF), the specific mechanisms triggering T cell activation during the progression of HF and the antigens involved are poorly understood. We hypothesized that myocardial oxidative stress induces the formation of isolevuglandin (IsoLG)-modified proteins that function as cardiac neoantigens to elicit CD4+ T cell receptor (TCR) activation and promote HF. Methods: We used transverse aortic constriction (TAC) in mice to trigger myocardial oxidative stress and T cell infiltration. We profiled the TCR repertoire by mRNA sequencing of intramyocardial activated CD4+ T cells in Nur77 GFP reporter mice, which transiently express GFP upon TCR engagement. We assessed the role of antigen presentation and TCR specificity in the development of cardiac dysfunction using antigen presentation-deficient MhcII -/- mice, and TCR transgenic OTII mice that lack specificity for endogenous antigens. We detected IsoLG-protein adducts in failing human hearts. We also evaluated the role of reactive oxygen species (ROS) and IsoLGs in eliciting T cell immune responses in vivo by treating mice with the antioxidant TEMPOL, and the IsoLG scavenger 2-hydroxybenzylamine (2-HOBA) during TAC, and ex-vivo in mechanistic studies of CD4+ T cell proliferation in response to IsoLG-modified cardiac proteins. Results: We discovered that TCR antigen recognition increases in the left ventricle (LV) as cardiac dysfunction progresses, and identified a limited repertoire of activated CD4+ T cell clonotypes in the LV. Antigen presentation of endogenous antigens was required to develop cardiac dysfunction since MhcII -/- mice reconstituted with CD4+ T cells, and OTII mice immunized with their cognate antigen were protected from TAC-induced cardiac dysfunction despite the presence of LV-infiltrated CD4+ T cells. Scavenging IsoLGs with 2-HOBA reduced TCR activation and prevented cardiac dysfunction. Mechanistically, cardiac pressure overload resulted in ROS dependent dendritic cell accumulation of IsoLG-protein adducts which induced robust CD4+ T cell proliferation. Conclusions: Collectively, our study demonstrates an important role of ROS-induced formation of IsoLG-modified cardiac neoantigens that lead to TCR-dependent CD4+ T cell activation within the heart.


1998 ◽  
Vol 187 (11) ◽  
pp. 1849-1862 ◽  
Author(s):  
Katina Saoulli ◽  
Soo Young Lee ◽  
Jennifer L. Cannons ◽  
Wen Chen Yeh ◽  
Angela Santana ◽  
...  

4-1BB ligand (4-1BBL) is a member of the tumor necrosis factor (TNF) family expressed on activated antigen-presenting cells. Its receptor, 4-1BB, is a member of the TNF receptor family expressed on activated CD4 and CD8 T cells. We have produced a soluble form of 4-1BBL using the baculovirus expression system. When coimmobilized on plastic with anti-CD3, soluble 4-1BBL induces interleukin (IL)-2 production by resting CD28+ or CD28− T cells, indicating that 4-1BBL can function independently of other cell surface molecules, including CD28, in costimulation of resting T cell activation. At low concentrations of anti-CD3, 4-1BBL is inferior to anti-CD28 in T cell activation. However, when 4-1BB ligand is provided together with strong TCR signals, then 4-1BBL and anti-CD28 are equally potent in stimulation of IL-2 production by resting T cells. We find that TNF receptor–associated factor (TRAF)1 or TRAF2 associate with a glutathione S-transferase–4-1BB cytoplasmic domain fusion protein in vitro. In T cells, we find that association of TRAF1 and TRAF2 with 4-1BB requires 4-1BB cross-linking. In support of a functional role for TRAF2 in 4-1BB signaling, we find that resting T cells isolated from TRAF2-deficient mice or from mice expressing a dominant negative form of TRAF2 fail to augment IL-2 production in response to soluble 4-1BBL. Thus 4-1BB, via the TRAF2 molecule, can provide CD28-independent costimulatory signals to resting T cells.


Sign in / Sign up

Export Citation Format

Share Document