Cell context–specific effects of the BCR-ABL oncogene monitored in hematopoietic progenitors

Blood ◽  
2003 ◽  
Vol 101 (10) ◽  
pp. 4088-4097 ◽  
Author(s):  
Stephane Wong ◽  
Jami McLaughlin ◽  
Donghui Cheng ◽  
Owen N. Witte

AbstractAcute BCR-ABL expression during in vitro hematopoietic development of embryonic stem (ES) cells causes expansion of multipotent and myeloid progenitors with a concomitant reduction in differentiation toward erythroblasts. Progenitor cell expansion is due to a rapid, cell autonomous, suppression of programmed cell death with an increase in expression of the antiapoptotic molecule BCL-XL. Other antiapoptotic effectors, including AKT, STAT5, and BCL-2 are not up-regulated by BCR-ABL in this system. In addition, the proapoptotic p38 mitogen–activated protein kinase (MAPK) pathway is suppressed by BCR-ABL expression in ES-derived hematopoietic progenitors. Inhibition of p38 MAPK by the small molecule inhibitor SB203580 expanded ES-derived hematopoietic progenitors by an antiapoptotic mechanism and is sufficient to expand ES-derived hematopoietic progenitors to levels approaching 80% of that seen following BCR-ABL expression. In the cellular context of ES-derived hematopoietic progenitors, BCR-ABL expression expands cells by suppressing programmed cell death with a set of antiapoptotic pathways distinct from those previously reported in continuous cell line studies.

Blood ◽  
2002 ◽  
Vol 99 (4) ◽  
pp. 1174-1182 ◽  
Author(s):  
Marie-Dominique Filippi ◽  
Françoise Porteu ◽  
Françoise Le Pesteur ◽  
Valérie Schiavon ◽  
Gaël A. Millot ◽  
...  

Enforced expression of c-mpl in embryonic stem (ES) cells inactivated for this gene results in protein expression in all the ES cell progeny, producing cells that do not belong to the megakaryocytic lineage and are responsive to PEG-rhuMGDF, a truncated form of human thrombopoietin (TPO) conjugated to polyethylene glycol. These include a primitive cell called BL-CFC, thought to represent the equivalent of the hemangioblast, and all myeloid progenitor cells. In this model, PEG-rhuMGDF was able to potentiate the stimulating effects of other growth factors, including vascular endothelial growth factor, on BL-CFC and a combination of cytokines on the growth of granulocyte macrophage–colony-forming units. The importance of the C-terminal domain of Mpl and of mitogen-activated protein kinase (MAPK) activation in TPO-dependent megakaryocytic differentiation has been well studied in vitro. Here, the role of this domain and the involvement of MAPK in upstream and nonmegakaryocytic cells are examined by using 2 truncated mutants of Mpl (Δ34, deletion of residues 71 to 121 in the C-terminal domain; and Δ3, deletion of residues 71-94) and specific inhibitors of the MAPK pathway. The 2 deleted regions support different functions, mediated by different signals. Residues 71 to 121 were required for PEG-rhuMGDF–dependent growth of BL-CFC, for megakaryocytic and other myeloid progenitors, and for megakaryocyte polyploidization. These responses were mediated by the ERK1–ERK2 MAPK pathway. In contrast, the only function of the sequence comprising residues 71 to 94 was to mediate the synergistic effects of PEG-rhuMGDF with other hematopoietic growth factors. This function is not mediated by MAPK activation.


2020 ◽  
Author(s):  
Purva Karia ◽  
Keiko Yoshioka ◽  
Wolfgang Moeder

ABSTRACTThe role of mitochondria in programmed cell death (PCD) during animal growth and development is well documented, but much less is known for plants. We previously showed that the Arabidopsis thaliana triphosphate tunnel metalloenzyme (TTM) proteins TTM1 and TTM2 are tail-anchored proteins that localize in the mitochondrial outer membrane and participate in PCD during senescence and immunity, respectively. Here, we show that TTM1 is specifically involved in senescence induced by abscisic acid (ABA). Moreover, phosphorylation of TTM1 by multiple mitogen-activated protein kinases (MAPKs) regulates its function and turnover. A combination of proteomics and in vitro kinase assays revealed three major phosphorylation sites of TTM1 (S10, S437, and S490), which are phosphorylated upon perception of senescence cues such as ABA and prolonged darkness. S437 is phosphorylated by the MAP kinases MPK3 and MPK4, and S437 phosphorylation is essential for TTM1 function in senescence. These MPKs, together with three additional MAP kinases (MPK1, MPK7, and MPK6), phosphorylate S10 and S490, marking TTM1 for protein turnover, which likely prevents uncontrolled cell death. Taken together, our results show that multiple MPKs regulate the function and turnover of the mitochondrial protein TTM1 during senescence-related PCD, revealing a novel link between mitochondria and PCD.SummaryEmail addresses: [email protected]


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Revathee Rajajendram ◽  
Chau Ling Tham ◽  
Mohamad Nadeem Akhtar ◽  
Mohd Roslan Sulaiman ◽  
Daud Ahmad Israf

Asthma is associated with increased pulmonary inflammation and airway hyperresponsiveness. The interaction between airway epithelium and inflammatory mediators plays a key role in the pathogenesis of asthma.In vitrostudies evaluated the inhibitory effects of 3-(2,5-dimethoxyphenyl)-1-(5-methylfuran-2-yl)prop-2-en-1-one (DMPF-1), a synthetic chalcone analogue, upon inflammation in the A549 lung epithelial cell line. DMPF-1 selectively inhibited TNF-α-stimulated CC chemokine secretion (RANTES, eotaxin-1, and MCP-1) without any effect upon CXC chemokine (GRO-αand IL-8) secretion. Western blot analysis further demonstrated that the inhibitory activity resulted from disruption of p65NF-κB nuclear translocation without any effects on the mitogen-activated protein kinase (MAPK) pathway. Treatment of ovalbumin-sensitized and ovalbumin-challenged BALB/c mice with DMPF-1 (0.2–100 mg/kg) demonstrated significant reduction in the secretion and gene expression of CC chemokines (RANTES, eotaxin-1, and MCP-1) and Th2 cytokines (IL-4, IL-5, and IL-13). Furthermore, DMPF-1 treatment inhibited eosinophilia, goblet cell hyperplasia, peripheral blood total IgE, and airway hyperresponsiveness in ovalbumin-sensitized and ovalbumin-challenged mice. In conclusion, these findings demonstrate the potential of DMPF-1, a nonsteroidal compound, as an antiasthmatic agent for further pharmacological evaluation.


2004 ◽  
Vol 15 (3) ◽  
pp. 1224-1232 ◽  
Author(s):  
Silvia Di Agostino ◽  
Monica Fedele ◽  
Paolo Chieffi ◽  
Alfredo Fusco ◽  
Pellegrino Rossi ◽  
...  

The mitogen-activated protein kinase (MAPK) pathway is required for maintaining the chromatin condensed during the two meiotic divisions and to avoid a second round of DNA duplication. However, molecular targets of the MAPK pathway on chromatin have not yet been identified. Here, we show that the architectural chromatin protein HMGA2 is highly expressed in male meiotic cells. Furthermore, Nek2, a serine-threonine kinase activated by the MAPK pathway in mouse pachytene spermatocytes, directly interacts with HMGA2 in vitro and in mouse spermatocytes. The interaction does not depend on the activity of Nek2 and seems constitutive. On progression from pachytene to metaphase, Nek2 is activated and HMGA2 is phosphorylated in an MAPK-dependent manner. We also show that Nek2 phosphorylates in vitro HMGA2 and that this phosphorylation decreases the affinity of HMGA2 for DNA and might favor its release from the chromatin. Indeed, we find that most HMGA2 associates with chromatin in mouse pachytene spermatocytes, whereas it is excluded from the chromatin upon the G2/M progression. Because hmga2-/- mice are sterile and show a dramatic impairment of spermatogenesis, it is possible that the functional interaction between HMGA2 and Nek2 plays a crucial role in the correct process of chromatin condensation in meiosis.


2008 ◽  
Vol 413 (3) ◽  
pp. 429-436 ◽  
Author(s):  
Yan Zeng ◽  
Heidi Sankala ◽  
Xiaoxiao Zhang ◽  
Paul R. Graves

Ago (Argonaute) proteins are essential effectors of RNA-mediated gene silencing. To explore potential regulatory mechanisms for Ago proteins, we examined the phosphorylation of human Ago2. We identified serine-387 as the major Ago2 phosphorylation site in vivo. Phosphorylation of Ago2 at serine-387 was significantly induced by treatment with sodium arsenite or anisomycin, and arsenite-induced phosphorylation was inhibited by a p38 MAPK (mitogen-activated protein kinase) inhibitor, but not by inhibitors of JNK (c-Jun N-terminal kinase) or MEK [MAPK/ERK (extracellular-signal-regulated kinase) kinase]. MAPKAPK2 (MAPK-activated protein kinase-2) phosphorylated bacterially expressed full-length human Ago2 at serine-387 in vitro, but not the S387A mutant. Finally, mutation of serine-387 to an alanine residue or treatment of cells with a p38 MAPK inhibitor reduced the localization of Ago2 to processing bodies. These results suggest a potential regulatory mechanism for RNA silencing acting through Ago2 serine-387 phosphorylation mediated by the p38 MAPK pathway.


1996 ◽  
Vol 184 (1) ◽  
pp. 9-18 ◽  
Author(s):  
J Alberola-Ila ◽  
K A Hogquist ◽  
K A Swan ◽  
M J Bevan ◽  
R M Perlmutter

During T cell development, interaction of the T cell receptor (TCR) with cognate ligands in the thymus may result in either maturation (positive selection) or death (negative selection). The intracellular pathways that control these opposed outcomes are not well characterized. We have generated mice expressing dominant-negative Ras (dnRas) and Mek-1 (dMek) transgenes simultaneously, either in otherwise normal animals, or in animals expressing a transgenic TCR, thereby permitting a comprehensive analysis of peptide-specific selection. In this system, thymocyte maturation beyond the CD4+8+ stage is blocked almost completely, whereas negative selection, assessed using an in vitro deletion protocol, is quantitatively intact. This suggests that activation of the mitogen-activated protein kinase (MAPK) cascade is necessary for positive selection, but irrelevant for negative selection. Generation of gamma/delta and of CD4-8- alpha/beta T cells proceeds normally despite blockade of the MAPK cascade. Hence, only cells that mature via conventional, TCR-mediated repertoire selection require activation of the MAPK pathway to complete their maturation.


2006 ◽  
Vol 11 (4) ◽  
pp. 423-434 ◽  
Author(s):  
Charlotta Grånäs ◽  
Betina Kerstin Lundholt ◽  
Frosty Loechel ◽  
Hans-Christian Pedersen ◽  
Sara Petersen Bjørn ◽  
...  

The RAS-mitogen-activated protein kinase (MAPK) signaling pathway has a central role in regulating the proliferation and survival of both normal and tumor cells. This pathway has been 1 focus area for the development of anticancer drugs, resulting in several compounds, primarily kinase inhibitors, in clinical testing. The authors have undertaken a cell-based, high-throughput screen using a novel ERF1 Redistribution® assay to identify compounds that modulate the signaling pathway. The hit compounds were subsequently tested for activity in a functional cell proliferation assay designed to selectively detect compounds inhibiting the proliferation of MAPK pathway-dependent cancer cells. The authors report the identification of 2 cell membrane-permeable compounds that exhibit activity in the ERF1 Redistribution® assay and selectively inhibit proliferation of MAPK pathway-dependent malignant melanoma cells at similar potencies (IC50 =< 5 μM). These compounds have drug-like structures and are negative in RAF, MEK, and ERK in vitro kinase assays. Drugs belonging to these compound classes may prove useful for treating cancers caused by excessive MAPK pathway signaling. The results also show that cell-based, high-content Redistribution® screens can detect compounds with different modes of action and reveal novel targets in a pathway known to be disease relevant.


Author(s):  
William E. Tidyman ◽  
Alice F. Goodwin ◽  
Yoshiko Maeda ◽  
Ophir D. Klein ◽  
Katherine A. Rauen

Costello syndrome (CS) is a congenital disorder caused by heterozygous activating germline HRAS mutations in the canonical Ras/mitogen-activated protein kinase (Ras/MAPK) pathway. CS is one of the RASopathies, a large group of syndromes due to mutations within various components of the Ras/MAPK pathway. An important part of the phenotype that greatly impacts quality of life is hypotonia. To gain a better understanding of the mechanisms underlying hypotonia in CS, a mouse model with an activating HrasG12V allele was utilized. We identified a skeletal myopathy that was due in part to an inhibition of embryonic myogenesis and myofiber formation, resulting in a reduction of myofiber size and number that led to reduced muscle mass and strength. In addition to hyperactivation of the Ras/MAPK and PI3K/AKT pathways, there was a significant reduction of p38 signaling, as well as global transcriptional alterations consistent with the myopathic phenotype. Inhibition of Ras/MAPK pathway signaling using a MEK inhibitor rescued the HrasG12V myopathy phenotype both in vitro and in vivo, demonstrating that increased MAPK signaling is the main cause of the muscle phenotype in CS.


Blood ◽  
1997 ◽  
Vol 89 (4) ◽  
pp. 1207-1213 ◽  
Author(s):  
Takumi Era ◽  
Tomomi Takahashi ◽  
Katsuya Sakai ◽  
Kazuo Kawamura ◽  
Toru Nakano

Abstract Thrombopoietin (TPO), the ligand for the receptor proto-oncogene c-Mpl, has been cloned and shown to be the critical regulator of proliferation and differentiation of megakaryocytic lineage. Initially, TPO was not considered to have the activity on hematopoietic lineages other than megakaryocytes. Recently, however, TPO was reported to enhance the in vitro erythroid colony formation from human bone marrow (BM) CD34+ progenitors or from mouse BM cells in combination with other cytokines. We examined the effects of TPO on the colony formation of hematopoietic progenitors in mouse yolk sac. TPO remarkably enhanced proliferation and differentiation of erythroid-lineage cells in the presence of erythropoietin (Epo). This effect was observed even in the absence of Epo. Compared with adult BM, yolk sac turned out to have relatively abundant erythroid and erythro-megakaryocytic progenitors, which responded to TPO and Epo stimulation. TPO similarly stimulated erythroid colony formation from in vitro differentiation-induced mouse embryonic stem (ES) cells whose hematopoietic differentiation status was similar to that of yolk sac. These findings help to understand the biology of hematopoietic progenitors of the early phase of hematopoiesis. Yolk sac cells or in vitro differentiation-induced ES cells would be good sources to analyze the TPO function on erythropoiesis.


Sign in / Sign up

Export Citation Format

Share Document