scholarly journals Inhibition of Epithelial CC-Family Chemokine Synthesis by the Synthetic Chalcone DMPF-1 via Disruption of NF-κB Nuclear Translocation and Suppression of Experimental Asthma in Mice

2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Revathee Rajajendram ◽  
Chau Ling Tham ◽  
Mohamad Nadeem Akhtar ◽  
Mohd Roslan Sulaiman ◽  
Daud Ahmad Israf

Asthma is associated with increased pulmonary inflammation and airway hyperresponsiveness. The interaction between airway epithelium and inflammatory mediators plays a key role in the pathogenesis of asthma.In vitrostudies evaluated the inhibitory effects of 3-(2,5-dimethoxyphenyl)-1-(5-methylfuran-2-yl)prop-2-en-1-one (DMPF-1), a synthetic chalcone analogue, upon inflammation in the A549 lung epithelial cell line. DMPF-1 selectively inhibited TNF-α-stimulated CC chemokine secretion (RANTES, eotaxin-1, and MCP-1) without any effect upon CXC chemokine (GRO-αand IL-8) secretion. Western blot analysis further demonstrated that the inhibitory activity resulted from disruption of p65NF-κB nuclear translocation without any effects on the mitogen-activated protein kinase (MAPK) pathway. Treatment of ovalbumin-sensitized and ovalbumin-challenged BALB/c mice with DMPF-1 (0.2–100 mg/kg) demonstrated significant reduction in the secretion and gene expression of CC chemokines (RANTES, eotaxin-1, and MCP-1) and Th2 cytokines (IL-4, IL-5, and IL-13). Furthermore, DMPF-1 treatment inhibited eosinophilia, goblet cell hyperplasia, peripheral blood total IgE, and airway hyperresponsiveness in ovalbumin-sensitized and ovalbumin-challenged mice. In conclusion, these findings demonstrate the potential of DMPF-1, a nonsteroidal compound, as an antiasthmatic agent for further pharmacological evaluation.

2004 ◽  
Vol 15 (3) ◽  
pp. 1224-1232 ◽  
Author(s):  
Silvia Di Agostino ◽  
Monica Fedele ◽  
Paolo Chieffi ◽  
Alfredo Fusco ◽  
Pellegrino Rossi ◽  
...  

The mitogen-activated protein kinase (MAPK) pathway is required for maintaining the chromatin condensed during the two meiotic divisions and to avoid a second round of DNA duplication. However, molecular targets of the MAPK pathway on chromatin have not yet been identified. Here, we show that the architectural chromatin protein HMGA2 is highly expressed in male meiotic cells. Furthermore, Nek2, a serine-threonine kinase activated by the MAPK pathway in mouse pachytene spermatocytes, directly interacts with HMGA2 in vitro and in mouse spermatocytes. The interaction does not depend on the activity of Nek2 and seems constitutive. On progression from pachytene to metaphase, Nek2 is activated and HMGA2 is phosphorylated in an MAPK-dependent manner. We also show that Nek2 phosphorylates in vitro HMGA2 and that this phosphorylation decreases the affinity of HMGA2 for DNA and might favor its release from the chromatin. Indeed, we find that most HMGA2 associates with chromatin in mouse pachytene spermatocytes, whereas it is excluded from the chromatin upon the G2/M progression. Because hmga2-/- mice are sterile and show a dramatic impairment of spermatogenesis, it is possible that the functional interaction between HMGA2 and Nek2 plays a crucial role in the correct process of chromatin condensation in meiosis.


2008 ◽  
Vol 413 (3) ◽  
pp. 429-436 ◽  
Author(s):  
Yan Zeng ◽  
Heidi Sankala ◽  
Xiaoxiao Zhang ◽  
Paul R. Graves

Ago (Argonaute) proteins are essential effectors of RNA-mediated gene silencing. To explore potential regulatory mechanisms for Ago proteins, we examined the phosphorylation of human Ago2. We identified serine-387 as the major Ago2 phosphorylation site in vivo. Phosphorylation of Ago2 at serine-387 was significantly induced by treatment with sodium arsenite or anisomycin, and arsenite-induced phosphorylation was inhibited by a p38 MAPK (mitogen-activated protein kinase) inhibitor, but not by inhibitors of JNK (c-Jun N-terminal kinase) or MEK [MAPK/ERK (extracellular-signal-regulated kinase) kinase]. MAPKAPK2 (MAPK-activated protein kinase-2) phosphorylated bacterially expressed full-length human Ago2 at serine-387 in vitro, but not the S387A mutant. Finally, mutation of serine-387 to an alanine residue or treatment of cells with a p38 MAPK inhibitor reduced the localization of Ago2 to processing bodies. These results suggest a potential regulatory mechanism for RNA silencing acting through Ago2 serine-387 phosphorylation mediated by the p38 MAPK pathway.


1996 ◽  
Vol 184 (1) ◽  
pp. 9-18 ◽  
Author(s):  
J Alberola-Ila ◽  
K A Hogquist ◽  
K A Swan ◽  
M J Bevan ◽  
R M Perlmutter

During T cell development, interaction of the T cell receptor (TCR) with cognate ligands in the thymus may result in either maturation (positive selection) or death (negative selection). The intracellular pathways that control these opposed outcomes are not well characterized. We have generated mice expressing dominant-negative Ras (dnRas) and Mek-1 (dMek) transgenes simultaneously, either in otherwise normal animals, or in animals expressing a transgenic TCR, thereby permitting a comprehensive analysis of peptide-specific selection. In this system, thymocyte maturation beyond the CD4+8+ stage is blocked almost completely, whereas negative selection, assessed using an in vitro deletion protocol, is quantitatively intact. This suggests that activation of the mitogen-activated protein kinase (MAPK) cascade is necessary for positive selection, but irrelevant for negative selection. Generation of gamma/delta and of CD4-8- alpha/beta T cells proceeds normally despite blockade of the MAPK cascade. Hence, only cells that mature via conventional, TCR-mediated repertoire selection require activation of the MAPK pathway to complete their maturation.


2006 ◽  
Vol 11 (4) ◽  
pp. 423-434 ◽  
Author(s):  
Charlotta Grånäs ◽  
Betina Kerstin Lundholt ◽  
Frosty Loechel ◽  
Hans-Christian Pedersen ◽  
Sara Petersen Bjørn ◽  
...  

The RAS-mitogen-activated protein kinase (MAPK) signaling pathway has a central role in regulating the proliferation and survival of both normal and tumor cells. This pathway has been 1 focus area for the development of anticancer drugs, resulting in several compounds, primarily kinase inhibitors, in clinical testing. The authors have undertaken a cell-based, high-throughput screen using a novel ERF1 Redistribution® assay to identify compounds that modulate the signaling pathway. The hit compounds were subsequently tested for activity in a functional cell proliferation assay designed to selectively detect compounds inhibiting the proliferation of MAPK pathway-dependent cancer cells. The authors report the identification of 2 cell membrane-permeable compounds that exhibit activity in the ERF1 Redistribution® assay and selectively inhibit proliferation of MAPK pathway-dependent malignant melanoma cells at similar potencies (IC50 =< 5 μM). These compounds have drug-like structures and are negative in RAF, MEK, and ERK in vitro kinase assays. Drugs belonging to these compound classes may prove useful for treating cancers caused by excessive MAPK pathway signaling. The results also show that cell-based, high-content Redistribution® screens can detect compounds with different modes of action and reveal novel targets in a pathway known to be disease relevant.


Author(s):  
William E. Tidyman ◽  
Alice F. Goodwin ◽  
Yoshiko Maeda ◽  
Ophir D. Klein ◽  
Katherine A. Rauen

Costello syndrome (CS) is a congenital disorder caused by heterozygous activating germline HRAS mutations in the canonical Ras/mitogen-activated protein kinase (Ras/MAPK) pathway. CS is one of the RASopathies, a large group of syndromes due to mutations within various components of the Ras/MAPK pathway. An important part of the phenotype that greatly impacts quality of life is hypotonia. To gain a better understanding of the mechanisms underlying hypotonia in CS, a mouse model with an activating HrasG12V allele was utilized. We identified a skeletal myopathy that was due in part to an inhibition of embryonic myogenesis and myofiber formation, resulting in a reduction of myofiber size and number that led to reduced muscle mass and strength. In addition to hyperactivation of the Ras/MAPK and PI3K/AKT pathways, there was a significant reduction of p38 signaling, as well as global transcriptional alterations consistent with the myopathic phenotype. Inhibition of Ras/MAPK pathway signaling using a MEK inhibitor rescued the HrasG12V myopathy phenotype both in vitro and in vivo, demonstrating that increased MAPK signaling is the main cause of the muscle phenotype in CS.


Blood ◽  
2003 ◽  
Vol 101 (10) ◽  
pp. 4088-4097 ◽  
Author(s):  
Stephane Wong ◽  
Jami McLaughlin ◽  
Donghui Cheng ◽  
Owen N. Witte

AbstractAcute BCR-ABL expression during in vitro hematopoietic development of embryonic stem (ES) cells causes expansion of multipotent and myeloid progenitors with a concomitant reduction in differentiation toward erythroblasts. Progenitor cell expansion is due to a rapid, cell autonomous, suppression of programmed cell death with an increase in expression of the antiapoptotic molecule BCL-XL. Other antiapoptotic effectors, including AKT, STAT5, and BCL-2 are not up-regulated by BCR-ABL in this system. In addition, the proapoptotic p38 mitogen–activated protein kinase (MAPK) pathway is suppressed by BCR-ABL expression in ES-derived hematopoietic progenitors. Inhibition of p38 MAPK by the small molecule inhibitor SB203580 expanded ES-derived hematopoietic progenitors by an antiapoptotic mechanism and is sufficient to expand ES-derived hematopoietic progenitors to levels approaching 80% of that seen following BCR-ABL expression. In the cellular context of ES-derived hematopoietic progenitors, BCR-ABL expression expands cells by suppressing programmed cell death with a set of antiapoptotic pathways distinct from those previously reported in continuous cell line studies.


Author(s):  
Eva M. Goetz ◽  
Levi A. Garraway

Overview: Anticancer drug resistance remains a crucial impediment to the care of many patients with cancer. Although the exact mechanisms of resistance may differ for each therapy, common mechanisms of resistance predominate, including drug inactivation or modification, mutation of the target protein, reduced drug accumulation, or bypass of target inhibition. With the discovery and use of targeted therapies (such as small-molecule kinase inhibitors), resistance has received renewed attention—especially in light of the dramatic responses that may emerge from such therapeutics in particular genetic or molecular contexts. Recently, the mitogen-activated protein kinase (MAPK) pathway has become exemplary in this regard, since it is activated in many different cancers. Drugs targeting RAF and MAPK kinase (MEK) are currently in clinical trials for the treatment of several types of cancer. Vemurafenib, a selective RAF kinase inhibitor recently approved for the treatment of BRAF(V600E) melanoma, shows strong efficacy initially; however, the development of resistance is nearly ubiquitous. In vitro testing and analysis of patient samples have uncovered several mechanisms of resistance to RAF inhibition. Surprisingly, mutations in the drug-binding pocket have not thus far been observed; however, other alterations at the level of RAF, as well as downstream activation of MEK and bypass of MEK/extracellular signal-regulated kinase (ERK) signaling altogether, confer resistance to vemurafenib. Looking forward, combined RAF and MEK inhibitor treatments may improve efficacy—yet we must anticipate mechanisms of resistance to this combination as well. Therefore, understanding and/or determining the mechanism of resistance are paramount to effective cancer treatment.


1999 ◽  
Vol 19 (12) ◽  
pp. 8344-8352 ◽  
Author(s):  
Maiko Inagaki ◽  
Tobias Schmelzle ◽  
Kyoko Yamaguchi ◽  
Kenji Irie ◽  
Michael N. Hall ◽  
...  

ABSTRACT PDK1 (phosphoinositide-dependent kinase 1) is a mammalian growth factor-regulated serine/threonine kinase. Using a genetic selection based on a mutant form of the yeast MAP kinase kinase Ste7, we isolated a gene, PKH2, encoding a structurally and functionally conserved yeast homolog of PDK1. Yeast cells lacking bothPKH2 and PKH1, encoding another PDK1 homolog, were nonviable, indicating that Pkh1 and Pkh2 share an essential function. A temperature-sensitive mutant, pkh1D398Gpkh2, was phenotypically similar to mutants defective in the Pkc1–mitogen-activated protein kinase (MAPK) pathway. Genetic epistasis analyses, the phosphorylation of Pkc1 by Pkh2 in vitro, and reduced Pkc1 activity in the pkh1D398G pkh2mutant indicate that Pkh functions upstream of Pkc1. The Pkh2 phosphorylation site in Pkc1 (Thr-983) is part of a conserved PDK1 target motif and essential for Pkc1 function. Thus, the yeast PDK1 homologs activate Pkc1 and the Pkc1-effector MAPK pathway.


2019 ◽  
Author(s):  
Chi-Chuan Lin ◽  
Lukasz Wieteska ◽  
Kin Man Suen ◽  
Arnout Kalverda ◽  
Zamal Ahmed ◽  
...  

AbstractThe regulation of phosphatase activity is fundamental to the control of intracellular signalling and in particular the tyrosine kinase-mediated mitogen-activated protein kinase (MAPK) pathway. Shp2 is a ubiquitously expressed protein tyrosine phosphatase and its kinase-induced hyperactivity is associated with many cancer types. In non-stimulated cells we find that binding of the adaptor protein, Grb2, in its monomeric state initiates Shp2 activity independent of phosphatase phosphorylation. Grb2 forms a bidentate interaction with both the N-terminal SH2 and the catalytic domains of Shp2, releasing the phosphatase from its auto-inhibited conformation. Grb2 typically exists as a dimer in the cytoplasm. However, its monomeric state prevails under basal conditions when it is expressed at low concentration, or when it is constitutively phosphorylated on a specific tyrosine residue (Y160). Thus, Grb2 can activate Shp2 and downstream signal transduction, in the absence of extracellular growth factor stimulation or kinase-activating mutations, in response to defined cellular conditions. We identify a polypeptide biotool capable of blocking the Grb2-Shp2 interaction. This peptide down-regulates Shp2 activity in vitro and MAPK signalling in a cancer cell line.


2002 ◽  
Vol 1 (6) ◽  
pp. 1032-1040 ◽  
Author(s):  
Christian Young ◽  
James Mapes ◽  
Jennifer Hanneman ◽  
Sheikha Al-Zarban ◽  
Irene Ota

ABSTRACT Three type 2C Ser/Thr phosphatases (PTCs) are negative regulators of the yeast Saccharomyces cerevisiae high-osmolarity glycerol mitogen-activated protein kinase (MAPK) pathway. Ptc2 and Ptc3 are 75% identical to each other and differ from Ptc1 in having a noncatalytic domain. Previously, we showed that Ptc1 inactivates the pathway by dephosphorylating the Hog1 MAPK; Ptc1 maintains low basal Hog1 activity and dephosphorylates Hog1 during adaptation. Here, we examined the function of Ptc2 and Ptc3. First, deletion of PTC2 and/or PTC3 together with PTP2, encoding the protein tyrosine phosphatase that inactivates Hog1, produced a strong growth defect at 37°C that was dependent on HOG1, providing further evidence that PTC2 and PTC3 are negative regulators. Second, overexpression of PTC2 inhibited Hog1 activation but did not affect Hog1-Tyr phosphorylation, suggesting that Ptc2 inactivates the pathway by dephosphorylating the Hog1 activation loop phosphothreonine (pThr) residue. Indeed, in vitro studies confirmed that Ptc2 was specific for Hog1-pThr. Third, deletion of both PTC2 and PTC3 led to greater Hog1 activation upon osmotic stress than was observed in wild-type strains, although no obvious change in Hog1 inactivation during adaptation was seen. These results indicate that Ptc2 and Ptc3 differ from Ptc1 in that they limit maximal Hog1 activity. The function of the Ptc2 noncatalytic domain was also examined. Deletion of this domain decreased V max by 1.6-fold and increased Km by 2-fold. Thus Ptc2 requires an additional amino acid sequence beyond the catalytic domain defined for PTCs for full activity.


Sign in / Sign up

Export Citation Format

Share Document