Human CD8+CD25+ thymocytes share phenotypic and functional features with CD4+CD25+ regulatory thymocytes

Blood ◽  
2003 ◽  
Vol 102 (12) ◽  
pp. 4107-4114 ◽  
Author(s):  
Lorenzo Cosmi ◽  
Francesco Liotta ◽  
Elena Lazzeri ◽  
Michela Francalanci ◽  
Roberta Angeli ◽  
...  

Abstract CD8+CD25+ cells, which expressed high levels of Foxp3, glucocorticoid-induced tumor necrosis factor receptor (GITR), CCR8, tumor necrosis factor receptor 2 (TNFR2), and cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) mRNAs, were identified in the fibrous septa and medullary areas of human thymus. Activated CD8+CD25+ thymocytes did not produce cytokines, but most of them expressed surface CTLA-4 and transforming growth factor β1 (TGF-β1). Like CD4+CD25+, CD8+CD25+ thymocytes suppressed the proliferation of autologous CD25-T cells via a contact-dependent mechanism. The suppressive activity of CD8+CD25+ thymocytes was abrogated by a mixture of anti-CTLA-4 and anti-TGF-β1 antibodies and it was mediated by their ability to inhibit the expression of the interleukin 2 receptor α chain on target T cells. These results demonstrate the existence of a subset of human CD8+CD25+ thymocytes sharing phenotype, functional features, and mechanism of action with CD4+CD25+ T regulatory cells. (Blood. 2003;102:4107-4114)

Author(s):  
Yuumi Okuzono ◽  
Yo Muraki ◽  
Shuji Sato

Abstract Tumor necrosis factor receptor 2 (TNFR2), a membrane-bound tumor necrosis factor receptor expressed by regulatory T cells (Tregs), participates in Treg proliferation. Although a specific TNFR2 pathway has been reported, the signaling mechanism has not been completely elucidated. This study sought to clarify TNFR2 signaling in human Tregs using amplicon sequencing and single-cell RNA-sequencing to assess Tregs treated with a TNFR2 agonist antibody. Pathway enrichment analysis based on differentially expressed genes highlighted tumor necrosis factor α signaling via nuclear factor-kappa B, interleukin-2 signal transducer and activator of transcription 5 signaling, interferon-γ response, and cell proliferation-related pathways in Tregs after TNFR2 activation. TNFR2-high Treg-focused analysis found that these pathways were fully activated in cancer Tregs, showing high TNFR2 expression. Collectively, these findings suggest that TNFR2 orchestrates multiple pathways in cancer Tregs, which could help cancer cells escape immune surveillance, making TNFR2 signaling a potential anticancer therapy target.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Trine B. Levring ◽  
Martin Kongsbak-Wismann ◽  
Anna K. O. Rode ◽  
Fatima A. H. Al-Jaberi ◽  
Daniel V. Lopez ◽  
...  

Abstract In addition to antigen-driven signals, T cells need co-stimulatory signals for robust activation. Several receptors, including members of the tumor necrosis factor receptor superfamily (TNFRSF), can deliver co-stimulatory signals to T cells. Thioredoxin interacting protein (TXNIP) is an important inhibitor of glucose uptake and cell proliferation, but it is unknown how TXNIP is regulated in T cells. The aim of this study was to determine expression levels and regulation of TXNIP in human T cells. We found that naïve T cells express high levels of TXNIP and that treatment of blood samples with TNF results in rapid down-regulation of TXNIP in the T cells. TNF-induced TXNIP down-regulation correlated with increased glucose uptake. Furthermore, we found that density gradient centrifugation (DGC) induced down-regulation of TXNIP. We demonstrate that DGC induced TNF production that paralleled the TXNIP down-regulation. Treatment of blood with toll-like receptor (TLR) ligands induced TNF production and TXNIP down-regulation, suggesting that damage-associated molecular patterns (DAMPs), such as endogenous TLR ligands, released during DGC play a role in DGC-induced TXNIP down-regulation. Finally, we demonstrate that TNF-induced TXNIP down-regulation is dependent on caspase activity and is caused by caspase-mediated cleavage of TXNIP.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Liana Xhakollari ◽  
Amra Jujic ◽  
John Molvin ◽  
Peter M Nilsson ◽  
Hannes Holm ◽  
...  

Abstract Background and Aims The “Shrunken pore syndrome” is characterized by a difference in renal filtration between cystatin C and creatinine resulting in a low eGFRcystatinC/eGFRcreatinine-ratio, and studies have demonstrated a high risk for cardiovascular morbidity and mortality for patients with shrunken pore syndrome. In this observational study, we explored associations between shrunken pore syndrome and proteins implicated in cardiovascular disease and inflammation in patients with heart failure. Method Plasma samples from 300 individuals HARVEST-Malmö trial hospitalized for the diagnosis of heart failure (mean age 75 years; 30% female), were analyzed with a proximity extension assay consisting of 92 proteins, to identify proteins associated with shrunken pore syndrome. Shrunken pore syndrome was defined as eGFRcystatinC ≤60% of eGFRcreatinine. Proteins associated with shrunken pore syndrome in the initial age and sex-adjusted analyses (Bonferroni-corrected p≤ 5.4x10-4) were further adjusted for relevant covariates. Results In multivariate analyses, Shrunken pore syndrome was associated with elevated levels of six proteins; scavenger receptor cysteine-rich type 1 protein M130, tumor necrosis factor receptor 1, tumor necrosis factor receptor 2, osteoprotegerin, interleukin-2 receptor subunit alpha, and tyrosine-protein kinase receptor UFO (p<0.05). Conclusion In heart failure patients, shrunken pore syndrome was independently associated with proteins linked to atherosclerosis and cell proliferation.


Blood ◽  
2000 ◽  
Vol 95 (10) ◽  
pp. 3191-3198 ◽  
Author(s):  
Eric Ledru ◽  
Névéna Christeff ◽  
Olivier Patey ◽  
Pierre de Truchis ◽  
Jean-Claude Melchior ◽  
...  

Abstract Highly-active antiretroviral therapy (HAART) has lead to a dramatic decrease in the morbidity of patients infected with the human immunodeficiency virus (HIV). However, metabolic side effects, including lipodystrophy-associated (LD-associated) dyslipidemia, have been reported in patients treated with antiretroviral therapy. This study was designed to determine whether successful HAART was responsible for a dysregulation in the homeostasis of tumor necrosis factor- (TNF-), a cytokine involved in lipid metabolism. Cytokine production was assessed at the single cell level by flow cytometry after a short-term stimulation of peripheral blood T cells from HIV-infected (HIV+) patients who were followed during 18 months of HAART. A dramatic polarization to TNF- synthesis of both CD4 and CD8 T cells was observed in all patients. Because it was previously shown that TNF- synthesis by T cells was highly controlled by apoptosis, concomitant synthesis of TNF- and priming for apoptosis were also analyzed. The accumulation of T cells primed for TNF- synthesis is related to their escape from activation-induced apoptosis, partly due to the cosynthesis of interleukin-2 (IL-2) and TNF-. Interestingly, we observed that LD is associated with a more dramatic TNF- dysregulation, and positive correlations were found between the absolute number of TNF- CD8 T-cell precursors and lipid parameters usually altered in LD including cholesterol, triglycerides, and the atherogenic ratio apolipoprotein B (apoB)/apoA1. Observations from the study indicate that HAART dysregulates homeostasis of TNF- synthesis and suggest that this proinflammatory response induced by efficient antiretroviral therapy is a risk factor of LD development in HIV+ patients.


1994 ◽  
Vol 38 (12) ◽  
pp. 1005-1008 ◽  
Author(s):  
Didier Hober ◽  
Donat de Groote ◽  
Nathalie Vanpouille ◽  
Isabelle Dehart ◽  
Lu Shen ◽  
...  

Blood ◽  
2004 ◽  
Vol 103 (12) ◽  
pp. 4594-4601 ◽  
Author(s):  
Mizuko Mamura ◽  
WoonKyu Lee ◽  
Timothy J. Sullivan ◽  
Angelina Felici ◽  
Anastasia L. Sowers ◽  
...  

Abstract Tgf-β1-/- mice develop a progressive, lethal, inflammatory syndrome, but mechanisms leading to the spontaneous activation of Tgf-β1-/- T cells remain unclear. Here we show the disruption of CD28 gene expression accelerates disease in Tgf-β1-/- mice, and we link this increase in severity to a reduction in the number of CD4+CD25+ regulatory T cells. CD4+CD25+ T cells develop normally in Tgf-β1-/- mice and display characteristic expression of cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), glucocorticoid-induced tumor necrosis factor receptor (GITR), αEβ7 integrin, and Foxp3. Adoptive transfer of Tgf-β1-/- splenocytes to Tgf-β1+/+/Rag2-/- mice induced an autoimmune inflammatory disease with features similar to those of the Tgf-β1-/- phenotype, and disease transfer was accelerated by the depletion of Tgf-β1-/- CD4+CD25+ T cells from donor splenocytes. Cotransfer of Tgf- β1-/- CD4+CD25+ T cells clearly attenuated disease in Rag2-/- recipients of CD25+-depleted Tgf-β1-/- spleen and lymph node cells, but suppression was incomplete when compared with Tgf-β1+/+ CD4+CD25+ T cells. These data demonstrate that CD4+CD25+ regulatory T cells develop in complete absence of endogenous transforming growth factor-β1 (TGF-β1) expression and that autocrine TGF-β1 expression is not essential for these cells to suppress inflammation in vivo. (Blood. 2004;103:4594-4601)


Sign in / Sign up

Export Citation Format

Share Document